
笔记整理:刘赫,天津大学硕士
链接:https://doi.org/10.1007/s11280-023-01166-y
动机
大规模预训练语言模型(PLM)如BERT近取得了巨大的成功,成为自然语言处理(NLP)的一个里程碑。现在NLP社区的共识是采用PLM下游任务的骨干。在最近关于知识图谱问答(KGQA)的研究中,BERT或其变体在他们的KGQA模型中已经成为必要。然而,对于不同PLMs在KGQA中的性能,目前还缺乏全面的研究和比较。为此,本研究总结了两个基于PLM额外的神经网络模块的基本KGQA框架,以比较9种PLM性和效率方面的性能。此外,本研究在流行的SimpleQuestions基准测试的基础上提出了三个大规模kg的基准测试,以研究PLM展性。本研究仔细分析了所有基于PLMs的KGQA基本框架在这些基准和另外两个流行的数据集(WebQuestionSP和FreebaseQA)上的结果,发现PLMs中的知识蒸馏技术和知识增强方法对KGQA很有前景。最后,本研究测试了ChatGPT,它在NLP社区中引起了很大的关注,展示了它在零样本KGQA中的令人印象深刻的功能和局限性。
亮点
本文的亮点主要包括:
(1)第一次尝试全面研究各种PLM在KGQA任务中的整体性能。总结提出了两种基本的知识图谱

最低0.47元/天 解锁文章

2146

被折叠的 条评论
为什么被折叠?



