
笔记整理:和东顺,天津大学硕士,研究方向为软件缺陷分析
论文链接:https://aclanthology.org/2024.acl-long.558/
发表会议:ACL 2024
1. 动机
虽然大语言模型(LLMs)已经在自然语言理解和生成任务中取得了显著的成绩,但是它们依然存在一些关键性的限制,包括但不限于以下几点:
(1)难以融合新知识:现有的LLMs在处理新知识时常常遇到困难,特别是在需要将新知识与现有知识进行综合分析的情况下。
(2)幻觉(Hallucinations):在生成文本时,LLMs可能会产生与上下文不符或事实不符的信息,这是由于模型缺乏对输入信息的有效验证机制。
(3)解释推理过程的能力有限:当LLMs生成答案或结论时,往往难以清晰地表达它们是如何从给定的信息中得出这些结论的,即缺乏透明度。
为了解决这些问题,本文提出了名为MindMap的方法。MindMap是一个创新的提示(Prompting)管道,它利用了知识图谱(Knowledge Graphs, KGs)来增强LLMs的推理能力和透明度。通过这种方法,MindMap不仅能让LLMs理解KGs的输入,还能让模型在隐性知识与外部知识的组合基础上进行推理。更重要的是,MindMap能够揭示LLMs的思维导图,这实际上反映了模型基于知识本体的推理路径。

图1: 本文方法与其他提示基线比较:纯LLM、文档检索+LLM和KG检索+LLM
2. 贡献
本文建立了一种即插即用的提示方法MindMap,能让 LLM 理解图输入,从而构建自己的思维导图,支持基于证据的推理生成。该框架的概念演示图如图2所示:

图2:证据查询子图、合并推理子图和思维导图的概念演示。实体输入 Vq 可从输入中识别。相同颜色的线和圆表示它们相互对应。思维导图框中的红色虚线表示基于 LLM 知识的增强操作
具体而言,MindMap可以激发LLM的思维图:
(1)整合从KGs中检索到的事实和LLM

最低0.47元/天 解锁文章
&spm=1001.2101.3001.5002&articleId=143883690&d=1&t=3&u=7812328df28342a0b5d5a135125b7c0c)
754

被折叠的 条评论
为什么被折叠?



