1.TypeError: The value of a feed cannot be a tf.Tensor object. Acceptable feed values include Python scalars, strings, lists, numpy ndarrays, or TensorHandles.For reference,
错误原因: TensorFlow中,在开始训练时,feed_dict=
的数据,必须是实实在在的数据而不能是张量流,也就是说可以直接用print()
输出来。
如:
xs,ys = mnist.train.next_batch(BATCH_SIZE)
# print(xs)
reshped_xs = tf.reshape(xs,
[BATCH_SIZE,
mnist_inference.IMAGE_SIZE,
mnist_inference.IMAGE_SIZE,
mnist_inference.NUM_CHANNELS])
xx=sess.run(reshped_xs)
_,loss_value,step = sess.run([train_step,loss,global_step],
feed_dict={x:xx,y_:ys})
xs本来一开始是数据不是张量,但是经过tf.reshpae
之后,就变成了一个张量,所以在喂给feed_dict
前要先xx=sess.run(reshped_xs)
2. ValueError: setting an array element with a sequence.
错误原因: 一般来说这个错误是由于feed_dict
的维度与定义的占位符维度不一致,导致feed之后变成了字符串。
例如:
TensorFlow中,feed_dict=
的数据,不支持稀疏表示方式,需要.toarray()
转换,如果不转换,就会出现这个错误。
sess.run([train_step,loss,global_step],
feed_dict={x:X[start:end].toarray(),y_:Y[start:end]})
3. Tensorflow训练时内存持续增加并占满.
2018年8月9日16:55:48
今天在跑程序的时候,内存一个劲儿的涨。本地不行拿到服务器上去跑,62G内存分分钟干没了,不知道问题出在哪儿。经过在网上的一番查找,才弄清楚。一句话说:在迭代循环时,不能再包含任何张量的计算表达式,包括以tf.
开头的函数(如tf.nn.embedding_lookup
)
如果你非得计算,请在循环体外面定义好表达式,在循环中直接run
举例:
import tensorflow as tf
a = tf.Variable(tf.truncated_normal(shape=[100,1000]),name='a')
b = tf.Variable