目录
1. 通用爬虫(General Purpose Web Crawler)
爬虫技术详解
爬虫的基本概念与原理
爬虫(Web Crawler),又称网络爬虫或网络蜘蛛,是一种自动化程序,用于从互联网上抓取、解析和存储数据。其工作原理是模拟人类浏览网页的行为,但以更高的效率和更系统化的方式执行。爬虫的核心功能包括:
- 发送HTTP请求:模拟浏览器向目标网站服务器发送请求,获取网页内容
- 处理响应:接收服务器返回的HTML、JSON等格式的响应数据
- 数据提取:从响应中解析出目标数据(如文本、链接、图片、视频等)
- 持久化存储:将提取的数据保存到数据库或文件中
爬虫技术广泛应用于搜索引擎、数据分析、价格监控、舆情监测等多个领域。
爬虫的详细分类
1. 通用爬虫(General Purpose Web Crawler)
典型代表:Googlebot(谷歌爬虫)、Baiduspider(百度爬虫)
特点:
- 抓取范围覆盖全网公开可访问的网页
- 遵循广度优先或深度优先的遍历策略
- 通常用于构建搜索引擎的索引库
- 具有复杂的URL优先级评估和调度算法
示例应用:Google搜索引擎每天通过其爬虫抓取数十亿网页以更新搜索索引
2. 聚焦爬虫(Focused Crawler)
典型应用场景:
- 电商价格监控(如监控亚马逊、京东的商品价格波动)
- 新闻聚合(抓取特定主题的新闻文章)
- 招聘信息收集(从各大招聘网站抓取职位数据)
特点:
- 仅抓取与特定主题相关的网页
- 采用内容相关性评估算法
- 通常结合垂直领域的网页特征进行定制开发
技术实现:可以通过设置主题关键词、限定特定域名或结合机器学习分类器来实现聚焦抓取
3. 增量式爬虫(Incremental Crawler)
优化点:
- 仅抓取新增或更新的内容,避免重复抓取未变化的页面
- 通过比较页面哈希值或最后修改时间判断是否需要更新
- 显著减少带宽和计算资源消耗
实现方式:
# 伪代码示例:增量抓取逻辑
if page_hash != stored_hash or last_modified > stored_timestamp:
crawl_and_update(page)
爬虫完整工作流程详解
1. 种子URL管理
初始队列构建:
- 手工指定起始URL列表
- 从Sitemap.xml文件中提取
- 通过网站分类目录获取
URL去重策略:
- 基于内存的集合去重(适用于小规模爬虫)
- Redis等内存数据库去重(支持分布式)
- 布隆过滤器(Bloom Filter,节省内存空间)
2. 请求发送环节
HTTP请求模拟:
import requests
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64)",
"Accept-Language": "en-US,en;q=0.9",
"Cookie": "session_id=abc123"
}
proxies = {"http": "http://10.10.1.10:3128"}
response = requests.get(
url="https://example.com/api/data",
headers=headers,
proxies=proxies,
timeout=10
)
反爬应对措施:
- 轮换User-Agent字符串
- 维护Cookie池模拟登录状态
- 使用代理IP池避免IP封锁
- 设置合理的请求间隔(如random.uniform(1,3)秒)
3. 数据解析技术
常用解析方法对比:
| 方法 | 优点 | 缺点 | 适用场景 |
|---|---|---|---|
| 正则表达式 | 灵活高效 | 难以维护 | 简单结构化数据提取 |
| XPath | 表达力强 | 学习曲线陡 | XML/HTML文档导航 |
| CSS选择器 | 语法简洁 | 功能有限 | 网页元素定位 |
| BeautifulSoup | 容错性好 | 性能较低 | 快速开发原型 |
| lxml | 性能优异 | 安装复杂 | 大规模数据处理 |
示例:使用XPath提取数据
from lxml import html
tree = html.fromstring(response.text)
# 提取商品价格
prices = tree.xpath('//div[@class="price"]/text()')
# 提取商品标题
titles = tree.xpath('//h2[@itemprop="name"]/text()')
4. 数据存储方案
常见存储方式:
-
关系型数据库(MySQL、PostgreSQL)
- 适合结构化数据
- 支持复杂查询
- 示例表结构:
CREATE TABLE products ( id INT AUTO_INCREMENT PRIMARY KEY, title VARCHAR(255), price DECIMAL(10,2), url VARCHAR(512), crawl_time TIMESTAMP );
-
NoSQL数据库(MongoDB、Elasticsearch)
- 适合半结构化数据
- 灵活的模式设计
- 示例MongoDB文档:
{ "title": "无线耳机", "price": 299.00, "features": ["蓝牙5.0", "降噪"

最低0.47元/天 解锁文章
1866

被折叠的 条评论
为什么被折叠?



