task3

CNN(卷积神经网络)介绍
精度和速度比传统计算学习方法高很多
在计算机领域,CNN是解决图像分类,图像检索物体检测,语义分割的主流模型

CNN每一层有众多的卷积核组成,每个卷积核对输入的像素进行卷积操作得到下一次输入
约等于降维吧,变小了

卷积神经网络(简称CNN)是一类特殊的人工神经网络,是深度学习中重要的一个分支。CNN在很多领域都表现优异,精度和速度比传统计算学习算法高很多。特别是在计算机视觉领域,CNN是解决图像分类、图像检索、物体检测和语义分割的主流模型。

CNN每一层由众多的卷积核组成,每个卷积核对输入的像素进行卷积操作,得到下一次的输入。随着网络层的增加卷积核会逐渐扩大感受野,并缩减图像的尺寸。

CNN是一种层次模型,输入的是原始的像素数据。CNN通过卷积(convolution)、池化(pooling)、非线性激活函数(non-linear activation function)和全连接层(fully connected layer)构成。

如下图所示为LeNet网络结构,是非常经典的字符识别模型。两个卷积层,两个池化层,两个全连接层组成。卷积核都是5×5,stride=1,池化层使用最大池化。

通过多次卷积和池化,CNN的最后一层将输入的图像像素映射为具体的输出。如在分类任务中会转换为不同类别的概率输出,然后计算真实标签与CNN模型的预测结果的差异,并通过反向传播更新每层的参数,并在更新完成后再次前向传播,如此反复直到训练完成 。

与传统机器学习模型相比,CNN具有一种端到端(End to End)的思路。在CNN训练的过程中是直接从图像像素到最终的输出,并不涉及到具体的特征提取和构建模型的过程,也不需要人工的参与。

3.3 CNN发展
随着网络结构的发展,研究人员最初发现网络模型结构越深、网络参数越多模型的精度更优。比较典型的是AlexNet、VGG、InceptionV3和ResNet的发展脉络。

3.4 Pytorch构建CNN模型

在Pytorch中构建CNN模型非常简单,只需要定义好模型的参数和正向传播即可,Pytorch会根据正向传播自动计算反向传播。

在本章我们会构建一个非常简单的CNN,然后进行训练。这个CNN模型包括两个卷积层,最后并联6个全连接层进行分类。

import torch
torch.manual_seed(0)
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True

import torchvision.models as models
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data.dataset import Dataset

定义模型

class SVHN_Model1(nn.Module):
def init(self):
super(SVHN_Model1, self).init()
# CNN提取特征模块
self.cnn = nn.Sequential(
nn.Conv2d(3, 16, kernel_size=(3, 3), stride=(2, 2)),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(16, 32, kernel_size=(3, 3), stride=(2, 2)),
nn.ReLU(),
nn.MaxPool2d(2),
)
#
self.fc1 = nn.Linear(3237, 11)
self.fc2 = nn.Linear(3237, 11)
self.fc3 = nn.Linear(3237, 11)
self.fc4 = nn.Linear(3237, 11)
self.fc5 = nn.Linear(3237, 11)
self.fc6 = nn.Linear(3237, 11)

def forward(self, img):        
    feat = self.cnn(img)
    feat = feat.view(feat.shape[0], -1)
    c1 = self.fc1(feat)
    c2 = self.fc2(feat)
    c3 = self.fc3(feat)
    c4 = self.fc4(feat)
    c5 = self.fc5(feat)
    c6 = self.fc6(feat)
    return c1, c2, c3, c4, c5, c6

model = SVHN_Model1()

接下来是训练代码:

损失函数

criterion = nn.CrossEntropyLoss()

优化器

optimizer = torch.optim.Adam(model.parameters(), 0.005)

loss_plot, c0_plot = [], []

迭代10个Epoch

for epoch in range(10):
for data in train_loader:
c0, c1, c2, c3, c4, c5 = model(data[0])
loss = criterion(c0, data[1][:, 0]) +
criterion(c1, data[1][:, 1]) +
criterion(c2, data[1][:, 2]) +
criterion(c3, data[1][:, 3]) +
criterion(c4, data[1][:, 4]) +
criterion(c5, data[1][:, 5])
loss /= 6
optimizer.zero_grad()
loss.backward()
optimizer.step()

    loss_plot.append(loss.item())
    c0_plot.append((c0.argmax(1) == data[1][:, 0]).sum().item()*1.0 / c0.shape[0])
    
print(epoch)

在训练完成后我们可以将训练过程中的损失和准确率进行绘制,如下图所示。从图中可以看出模型的损失在迭代过程中逐渐减小,字符预测的准确率逐渐升高。

当然为了追求精度,也可以使用在ImageNet数据集上的预训练模型,具体方法如下:

class SVHN_Model2(nn.Module):
def init(self):
super(SVHN_Model1, self).init()

    model_conv = models.resnet18(pretrained=True)
    model_conv.avgpool = nn.AdaptiveAvgPool2d(1)
    model_conv = nn.Sequential(*list(model_conv.children())[:-1])
    self.cnn = model_conv
    
    self.fc1 = nn.Linear(512, 11)
    self.fc2 = nn.Linear(512, 11)
    self.fc3 = nn.Linear(512, 11)
    self.fc4 = nn.Linear(512, 11)
    self.fc5 = nn.Linear(512, 11)

def forward(self, img):        
    feat = self.cnn(img)
    # print(feat.shape)
    feat = feat.view(feat.shape[0], -1)
    c1 = self.fc1(feat)
    c2 = self.fc2(feat)
    c3 = self.fc3(feat)
    c4 = self.fc4(feat)
    c5 = self.fc5(feat)
    return c1, c2, c3, c4, c5
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值