转自:http://www.cnblogs.com/wushaogui/p/9142019.html
NumPy提供了多种文件操作函数方便我们存取数组内容。
文件存取的格式:二进制和文本。二进制格式的文件又分为NumPy专用的格式化二进制类型和无格式类型。
numpy的二进制文件(*.npy或*.npz)
1. numpy.load(file[, mmap_mode, allow_pickle, ...]) 从*.npy,*.npz或特定文件中加载数组或特定的对象。
2. numpy.save(file, arr[, allow_pickle=True, fix_imports=True,encoding='ASCII'])
以*.npy格式将一个数组保存到单个文件中。
file:文件名/文件路径(默认路径为当前路径,可用pwd查看当前路径)
arr:要存储的数组
allow_pickle:布尔值,允许使用Python pickles保存对象数组(可选参数,默认即可)
fix_imports:为了方便Pyhton2中读取Python3保存的数据(可选参数,默认即可)
>>> import numpy as np
>>> x=np.arange(10) #生成数据
>>> x
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.save('save_x',x) #数据保存
>>> np.load('save_x.npy') #读取保存的数据
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
3. numpy.savez(file, *args, **kwds) 以未压缩*.npz格式将多个数组保存到单个文件中。其实就是多个前面np.save的保存的npy
,再通过打包(未压缩)的方式把这些文件归到一个文件上,解压npz
文件里面是就是多个npy
。
file:文件名/文件路径
*args:要存储的数组,可以写多个,如果没有给数组指定Key,Numpy将默认从'arr_0','arr_1'的方式命名
kwds:(可选参数,默认即可)
>>> import numpy as np
>>> x=np.arange(10) #生成数据x
>>> x
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> y=np.sin(x) #生成数据y
>>> y
array([ 0. , 0.84147098, 0.90929743, 0.14112001, -0.7568025 ,
-0.95892427, -0.2794155 , 0.6569866 , 0.98935825, 0.41211849])
>>> np.savez('save_xy',x,y) #数据保存
>>> np.save('save_xy',x,y)
>>> npfile = np.load('save_xy.npy')
>>> npfile
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.savez('save_xy',x,y)
>>> npzfile=np.load('save_xy.npz') #读取保存的数据
>>> npzfile #是一个对象,无法读取
<numpy.lib.npyio.NpzFile object at 0x7f2204273f90>
>>> npzfile['arr_0'] #按照组数默认的key进行访问
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> npzfile['arr_1']
array([ 0. , 0.84147098, 0.90929743, 0.14112001, -0.7568025 ,
-0.95892427, -0.2794155 , 0.6569866 , 0.98935825, 0.41211849])
可以不用Numpy默认给数组的Key['arr_0','arr_1'],自己给数组有意义的Key:
>>> np.savez('save_xy',x_data=x,y_data=y) #数据保存
>>> npzfile = np.load('save_xy.npz') #读取保存的数据
#按照保存时设定的key进行访问
>>> npzfile['x_data']
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> npzfile['y_data']
array([ 0. , 0.84147098, 0.90929743, 0.14112001, -0.7568025 ,
-0.95892427, -0.2794155 , 0.6569866 , 0.98935825, 0.41211849])
4. numpy.savez_compressed(file, *args, **kwds) 以压缩*.npz格式将多个数组保存到单个文件中。
在前面numpy.savez的基础上加了压缩,可以理解为压缩前各npy
的文件大小不变,使用该函数比前面的numpy.savez得到的npz
文件更小.
注:函数所需参数和numpy.savez一致,用法一样。
numpy的文本文件(*.gz,)
1. numpy.savetxt(fname, X, fmt='%.18e', delimiter=' ', newline='\n', header='', footer='', comments='# ', encoding=None) 保存数组到文本文件上,可以直接打开查看文件里面的内容.
fname:文件名/文件路径,如果文件后缀是.gz
,文件将被自动保存为.gzip
格式,np.loadtxt可以识别该格式
X:要存储的1D或2D数组
fmt:控制数据存储的格式
delimiter:数据列之间的分隔符
newline:数据行之间的分隔符
header:文件头部写入的字符串
footer:文件底部写入的字符串
comments:文件头部或者尾部字符串的开头字符,默认是'#'
encoding:使用默认参数
>>> x = y = z = np.ones((2,3))
>>> x
array([[1., 1., 1.],
[1., 1., 1.]])
>>> np.savetxt('test.out',x)
>>> np.loadtxt('test.out')
array([[1., 1., 1.],
[1., 1., 1.]])
>>> np.savetxt('test1.out',x, fmt='%1.4e')
>>> np.loadtxt('test1.out')
array([[1., 1., 1.],
[1., 1., 1.]])
>>> np.savetxt('test2.out',x, delimiter=',')
>>> np.loadtxt('test2.out', delimiter=',')
array([[1., 1., 1.],
[1., 1., 1.]])
>>> x = y = z = np.arange(0.0,5.0,1.0)
>>> x
array([0., 1., 2., 3., 4.])
>>> y
array([0., 1., 2., 3., 4.])
>>> z
array([0., 1., 2., 3., 4.])
>>> np.savetxt('test.out', x, delimiter=',') # X is an array
>>> np.loadtxt('test.out',delimiter=',')
array([0., 1., 2., 3., 4.])
>>> np.savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays
>>> np.loadtxt('test.out')
array([[0., 1., 2., 3., 4.],
[0., 1., 2., 3., 4.],
[0., 1., 2., 3., 4.]])
>>> np.savetxt('test.out', x, fmt='%1.4e') # use exponential notation
>>> np.loadtxt('test.out')
array([0., 1., 2., 3., 4.])
2. numpy.loadtxtnumpy.loadtxt(fname, dtype=<class 'float'>, comments='#', delimiter=None, converters=None, skiprows=0, usecols=None, unpack=False, ndmin=0, encoding='bytes') 根据前面定制的保存格式,相应的加载数据的函数也得变化.
fname:文件名/文件路径,如果文件后缀是.gz
或.bz2
,文件将被解压,然后载入
dtype:要读取的数据类型
comments:文件头部或者尾部字符串的开头字符,用于识别头部,尾部字符串
delimiter:划分读取上来值的字符串
converters:数据行之间的分隔符
参考资料:
官方API-Routines