KNN算法的CUDA实现 在参考了《Fast k Nearest Neighbor Search using GPU》后,结合现在在做的课题,写点东西。1. 算法思路 KNN算法的基础是对给定的query点集,对应查找在参考空间中距离最近的K个紧邻点。KNN的应用方面非常广泛,在ICP配准问题,Spin-image旋转图像配准法,SIFT点提取,数据挖掘,机器学习等多个方面中有广泛应用。
关于环境建模与并行计算的几点想法 最近在做局部导航方面的探索,偶然看到了CMU大学的无人车项目Autonomous Driving Motion Planning,其中对无人车的局部导航提出一套不错的实现方案。他们采用了一种基于GPU加速的State Lattice并行算法,对比与传统的State Lattice 实现方式,速度大大提高。 一般来讲,无人导航车在非结构性环境下需要鲁棒性更强并且更偏底层的局部导航