PyTorch安装指南

如果想了解更多内容,欢迎关注我的微信公众号:信息学竞赛从入门到巅峰。

戳这里获得更好的阅读体验哦!.

近日,人工智能越来越火,人工智能的运用也越来越广泛。2020年12月4日,中国领子计算原型机“九章”问世,使得计算机的算力得到了巨大的提高。虽然“九章”只能处理高斯玻色采样这一特殊问题,但是相信不远的将来一定能发展出全能的量子计算机,进而为人工智能的训练提供强大的算力。

人工智能需要构建一定的模型,而对于模型的构建,PyTorch可以提供强大的帮助。本文将介绍在Ubuntu20.04虚拟机环境下使用pip3安装PyTorch。对于虚拟机的安装和配置,可以查看以前的文章(链接在文末)。

 

Python的安装

首先需要确定虚拟机内是否已经安装python3,在终端中输入如下命令:

$ python3 --version

如果能正常输出python的版本号,则说明已经安装了Python,否则可以使用以下命令安装Python3:

$ sudo apt-get install python3

需要注意的是,PyTorch官网上推荐使用Python3.5以上的版本,如果只装有Python2,同样需要安装Python3。

 

pip3安装

pip3是Python3中对应的包管理器,使用pip3可以方便快捷的对Python中的包进行管理。

可以使用如下指令查看虚拟机是否已经安装pip3:

$ pip3 --version

如果能正常输出版本号,则说明已经安装了pip3,否则可以在终端中输入以下命令安装pip3:

$ sudo apt-get install python3-pip

 

重定向

如果Python3和pip3都已经安装好了,为了后续操作的方便,我们使用如下指令来进行重定向:

$ sudo update-alternatives --install /usr/bin/pip pip /usr/bin/pip3 1
$ sudo update-alternatives --install /usr/bin/python python /usr/bin/python3 1

上述的两条指令将python指向了python3,将pip指向了pip3,后续使用只需要输入python即可使用python3,pip同理。

 

PyTorch安装

完成了前序的准备操作,可以开始安装PyTorch了。

首先,先登入PyTorch的官网:pytorch.org。

图片

下滑页面可以找到安装指导,选择合适的安装条件,可以给出对应的安装指令。选择页面中的CUDA选项是用于GPU加速的,由于虚拟机中未安装显卡驱动,这里选择了None选项。

图片

将给出的指令复制到虚拟机的终端中,回车运行即可。在安装过程中,若出现安装失败的情况,大概率是网络链接的问题,重复尝试即可。
 

测试

安装完成之后,为了判断是否安装成功,可以根据下图的指令进行测试。

图片

能将该矩阵输出即表示安装成功。

 

<think>嗯,用户想要找PyTorch安装指南,我得把之前收集的资料整理一下。首先看引用里提到的关键步骤:Anaconda安装、环境创建、选择版本、下载命令和测试验证。用户可能是在准备深度学习环境,需要明确自己电脑的硬件配置,特别是显卡是否支持CUDA。引用[1]提到安装前需要CUDA和cuDNN,但引用[3]说驱动部分一般不需要单独处理,可能是Anaconda会自动处理?这里要注意区分情况,显卡驱动确实要预先装好,但CUDA工具包可以通过conda安装安装流程的核心步骤在引用[4]里有具体说明:创建虚拟环境、激活环境、安装PyTorch。引用[2]给出了具体的conda命令示例,包括版本号1.12.0和对应的CUDA11.3,这个可以保留作为参考。不过得提醒用户版本要选对,因为不同PyTorch版本需要匹配不同的CUDA。清华镜像源那个引用[5]的信息很重要,国内用户加速下载必备。但要注意用户是否在国内,可能需要灵活调整是否使用镜像。测试部分得用简单的张量和cuda.is_available(),这样能快速验证核心功能是否正常。用户可能还会关心常见错误,比如环境没激活、CUDA版本冲突,这些可以放进注意事项。用户没提操作系统差异,但Win/Linux的命令行操作不同,比如condaactivate在旧版本要用sourceactivate,这个知识点要补充。虚拟环境的名字"pytorch"只是个例子,用户可能想用其他名字。最后考虑用户可能的后续问题:GPU加速的问题排查、环境迁移、多版本共存。特别是环境迁移这块,很多人会忽略导出requirements.txt的重要性。云平台部署也是个重点,但当前问题可能不需要展开,放在相关问题里提示就行。对了,PyTorch官网的那个配置页面特别直观,用户自己选版本就能生成命令,要重点强调这个工具,比死记硬背命令更可靠。</think> 以下是根据引用内容整理的 PyTorch 安装指南,包含关键步骤和注意事项: ### **PyTorch 安装完整流程** #### **1. 安装基础环境** - ✅ **安装 Anaconda**(必备的 Python 环境管理工具)[^1][^3][^4] - 🔧 **配置清华镜像源**(加速国内下载)[^5]: ```bash conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ conda config --set show_channel_urls yes ``` #### **2. 创建虚拟环境** - 新建独立环境(避免依赖冲突)[^4]: ```bash conda create -n pytorch python=3.8 # 环境名可自定义 ``` - 激活环境: ```bash conda activate pytorch ``` #### **3. 安装 PyTorch** - 🔧 **GPU 版本安装**(需 NVIDIA 显卡 + 已安装 CUDA)[^2]: ```bash conda install pytorch==1.12.0 torchvision==0.13.0 torchaudio==0.12.0 cudatoolkit=11.3 -c pytorch ``` - ⚙️ **CPU 版本安装**(无显卡或仅测试): 官网生成命令:访问 [pytorch.org](https://pytorch.org/get-started/locally/) 选择 "CPU" 选项 #### **4. 验证安装** - 运行 Python 测试代码: ```python import torch print(torch.__version__) # 输出版本号 print(torch.cuda.is_available()) # 检查 GPU 是否可用 → 返回 True 即成功 ``` --- ### **关键注意事项** 1. **版本匹配** - CUDA 版本需与显卡驱动兼容(通过 `nvidia-smi` 查驱动支持的最高 CUDA 版本) - PyTorch 版本需匹配 CUDA(例:CUDA 11.x → PyTorch 1.12+)[^2] 2. **环境隔离必要性** 虚拟环境可避免 Anaconda 基础环境被污染,便于多项目管理[^4] 3. **镜像加速技巧** 国内用户优先配置清华/中科大源,提升包下载速度[^5] --- ### 相关问题 1. 如何检查 NVIDIA 显卡的 CUDA 兼容性? 2. 安装 PyTorch 时出现 `CondaHTTPError` 如何解决? 3. PyTorch GPU 版本安装后 `torch.cuda.is_available()` 返回 False 的可能原因? 4. 如何将 Anaconda 虚拟环境导入 PyCharm? [^3] 5. 如何在云服务器(无图形界面)上安装 PyTorch? > 附:官方安装命令生成器 > 👉 [https://pytorch.org/get-started/locally/](https://pytorch.org/get-started/locally/) > 勾选系统环境后自动生成精准安装命令[^2][^3] [^1]: Anaconda 为 PyTorch 提供核心依赖管理 [^2]: CUDA 版本需严格匹配显卡驱动 [^3]: 虚拟环境需手动关联开发工具 [^4]: 环境隔离是避免依赖冲突的最佳实践 [^5]: 国内镜像源显著提升下载成功率
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值