AI助力地下矿井安全人员作业行为监管预警,基于嵌入式端超轻量级模型LeYOLO全系列【n/s/m/l】参数模型开发构建矿井地下作业场景下工程人员行为智能化检测识别分析系统

在现代化的工业运行中,基础能源的稳定供应是保障社会经济发展的关键。煤炭作为我国第一大矿业资源,每年有大量的工程作业人员投身于煤炭开采行业。地下矿井作业的安全问题一直是矿业稳定发展的重中之重。然而,传统的安全管理监管方式存在诸多局限性,难以满足现代矿业对安全生产的高要求。随着 AI 智能化技术的普及和快速发展,越来越多的传统行业开始接入 AI 智能化技术,助力生产赋能发展。本文将探讨 AI 技术如何在地下矿井安全管理中发挥重要作用,实现安全管理的智能化、高效化和精准化。

传统地下矿井安全管理的局限性

传统的地下矿井安全管理主要依赖于专业的安全员进行例行巡查,发现安全隐患后指派专人进行处理。此外,还会安装一些传感器设备来辅助人工监测,如瓦斯气体浓度监测、温度粉尘监测等。这种传统的安全管理模式存在以下局限性:

  1. 滞后性:传统的安全管理方式难以做到实时有效。安全员的巡查存在时间间隔,无法实时监控矿井内的安全状况。传感器设备虽然可以实时监测某些指标,但依赖于人工经验进行分析和处理,存在一定的滞后性。

  2. 人工依赖性:传统管理模式高度依赖人工,受限于人工的不确定因素,如疲劳、疏忽等,可能无法做到全天候有效稳定运行。此外,人工巡查可能存在遗漏,导致安全隐患未能及时发现,从而造成严重后果。

AI 智能化技术在地下矿井安全管理中的应用

随着 AI 技术的快速发展,其在地下矿井安全管理中的应用逐渐成为可能。通过在地下矿井中部署摄像头,可以采集广泛丰富的图像数据。这些数据经过众包团队进行标注处理后,用于训练 AI 模型。经过轻量化处理的 AI 模型可以部署在端侧的算力盒子上,对摄像头接入的视频流进行动态实时检测、识别和分析。一旦发现异常问题、行为或事件,立即触发平台预警,由安全员下达处置指令。这种智能化的安全管理模式具有以下优势:

  1. 实时性:AI 模型可以实时分析视频流,及时发现安全隐患,如人员违规操作、设备异常、环境变化等,实现对安全状况的实时监控。

  2. 高效性:AI 模型能够快速处理大量数据,提高安全管理的效率。通过自动化的检测和预警,减少了人工干预,降低了人力成本。

  3. 精准性:AI 模型经过大量数据训练,能够准确识别各种安全隐患,减少误报和漏报。通过深度学习算法,模型可以不断优化,提高识别的准确性。

  4. 稳定性:AI 系统可以实现 24 小时不间断运行,不受人工因素的影响,确保安全管理的稳定性和连续性。

AI 智能化技术在地下矿井安全管理中的具体应用案例

  1. 人员行为监测:通过摄像头采集矿井内人员的行为图像,AI 模型可以实时监测人员是否佩戴安全帽、是否在规定区域内活动、是否存在违规操作等。一旦发现异常行为,立即触发预警,提醒安全员进行处理。

  2. 设备状态监测:利用摄像头对矿井内的设备进行实时监测,AI 模型可以分析设备的运行状态,如设备是否正常运转、是否存在故障迹象等。一旦发现设备异常,及时通知维修人员进行处理,避免设备故障导致的安全事故。

  3. 环境监测:结合传感器数据和摄像头图像,AI 模型可以对矿井内的环境进行综合监测,如瓦斯浓度、温度、粉尘浓度等。一旦环境指标超出安全范围,立即触发预警,采取相应的措施,确保矿井内的环境安全。

  4. 应急响应:在发生突发事件时,AI 系统可以快速分析现场情况,提供应急响应建议,如人员疏散路线、救援设备调度等。通过智能化的应急响应,可以最大限度地减少事故损失,保障人员生命安全。

在前文中我们已经构建了对应的实践应用案例,感兴趣的话可以自行移步阅读即可:

《AI助力地下矿井安全人员作业行为监管预警,基于端到端YOLOv10全系列【n/s/m/b/l/x】参数模型开发构建矿井地下作业场景下工程人员行为智能化检测识别分析系统》

《AI助力地下矿井安全人员作业行为监管预警,基于YOLOv11全系列【n/s/m/l/x】参数模型开发构建矿井地下作业场景下工程人员行为智能化检测识别分析系统》

《AI助力地下矿井安全人员作业行为监管预警,基于最新以注意力为核心的YOLOv12全系列【n/s/m/l/x】参数模型开发构建矿井地下作业场景下工程人员行为智能化检测识别分析系统》

《AI助力地下矿井安全人员作业行为监管预警,基于最新超图增强型自适应视觉感知YOLOv13全系列【n/s/l/x】参数模型开发构建矿井地下作业场景下工程人员行为智能化检测识别分析系统》

本文主要是想要基于LeYOLO全系列的模型来进行相应的开发实践,首先看下实例效果:

接下来看下实例数据情况:

深度神经网络中的计算效率对于目标检测至关重要,尤其是在新模型将速度优先于高效计算(FLOP)的情况下。这种演变在某种程度上已经落后于嵌入式和面向移动的AI对象检测应用程序。这里重点讨论了基于FLOP的高效目标检测计算的神经网络结构的设计选择,并提出了几种优化方法来提高基于YLO的模型的效率。
首先,介绍了一种基于反向瓶颈和信息瓶颈原理的有效主干扩展方法。其次,提出了快速金字塔结构网络(FPAN),旨在促进快速多尺度特征共享,同时减少计算资源。最后提出了一个解耦的网络中网络(DNiN)检测头的设计,以提供快速而轻量级的计算分类和回归任务。
在这些优化的基础上,利用更高效的主干,为对象检测和以YOLO为中心的模型(称为LeYOLO)提供了一种新的缩放范例。在各种资源限制下始终优于现有模型,实现了前所未有的准确性和失败率。值得注意的是,LeYOLO Small在COCO val上仅以4.5次失败(G)获得了38.2%的竞争性mAP分数,与最新最先进的YOLOv9微小模型相比,计算量减少了42%,同时实现了类似的精度。我们的新型模型系列实现了以前未达到的浮点精度比,提供了从超低神经网络配置(<1 GFLOP)到高效但要求苛刻的目标检测设置(>4 GFLOP)的可扩展性,对于0.66、1.47、2.53、4.51、5.8和8.4浮点(G),具有25.2、31.3、35.2、38.2、39.3和41 mAP。

一共提供了n、s、m和l四款不同参数量级的模型。

这里我们保持完全相同的实验参数设置来进行四款模型的开发训练,等待训练完成之后我们来整体进行各项指标的对比分析。

【Precision曲线】
精确率曲线(Precision Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【mAP0.5】
mAP0.5,也被称为mAP@0.5或AP50,指的是当Intersection over Union(IoU)阈值为0.5时的平均精度(mean Average Precision)。IoU是一个用于衡量预测边界框与真实边界框之间重叠程度的指标,其值范围在0到1之间。当IoU值为0.5时,意味着预测框与真实框至少有50%的重叠部分。
在计算mAP0.5时,首先会为每个类别计算所有图片的AP(Average Precision),然后将所有类别的AP值求平均,得到mAP0.5。AP是Precision-Recall Curve曲线下面的面积,这个面积越大,说明AP的值越大,类别的检测精度就越高。
mAP0.5主要关注模型在IoU阈值为0.5时的性能,当mAP0.5的值很高时,说明算法能够准确检测到物体的位置,并且将其与真实标注框的IoU值超过了阈值0.5。

【mAP0.5:0.95】
mAP0.5:0.95,也被称为mAP@[0.5:0.95]或AP@[0.5:0.95],表示在IoU阈值从0.5到0.95变化时,取各个阈值对应的mAP的平均值。具体来说,它会在IoU阈值从0.5开始,以0.05为步长,逐步增加到0.95,并在每个阈值下计算mAP,然后将这些mAP值求平均。
这个指标考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。当mAP0.5:0.95的值很高时,说明算法在不同阈值下的检测结果均非常准确,覆盖面广,可以适应不同的场景和应用需求。
对于一些需求比较高的场合,比如安全监控等领域,需要保证高的准确率和召回率,这时mAP0.5:0.95可能更适合作为模型的评价标准。
综上所述,mAP0.5和mAP0.5:0.95都是用于评估目标检测模型性能的重要指标,但它们的关注点有所不同。mAP0.5主要关注模型在IoU阈值为0.5时的性能,而mAP0.5:0.95则考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。

【loss曲线】
在深度学习的训练过程中,loss函数用于衡量模型预测结果与实际标签之间的差异。loss曲线则是通过记录每个epoch(或者迭代步数)的loss值,并将其以图形化的方式展现出来,以便我们更好地理解和分析模型的训练过程。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

整体对比分析来看:不难发现四款不同参数量级的模型最终达到了较为相似的结果,没有拉开非常大的差距,这里综合参数量考虑我们最终选定了n系列的模型来作为线上的推理计算模型。接下来看下n系列模型的详细情况。

【离线推理实例】

【Batch实例】

【混淆矩阵】

【F1值曲线】

【Precision曲线】

【PR曲线】

【Recall曲线】

【训练可视化】

随着 AI 技术的不断发展和成熟,其在地下矿井安全管理中的应用将更加广泛和深入。未来的发展方向包括:

  1. 多模态数据融合:将摄像头图像、传感器数据、人员位置信息等多种数据进行融合,实现更全面、更准确的安全监测。

  2. 自主学习与优化:AI 模型将具备更强的自主学习能力,能够根据新的数据和情况进行自我优化,不断提高安全管理的智能化水平。

  3. 人机协作:AI 系统将与安全员、技术人员等进行更紧密的协作,实现人机优势互补,提高安全管理的整体效能。

  4. 智能化决策支持:AI 系统将为矿井安全管理提供更全面、更科学的决策支持,帮助管理人员制定更合理的安全策略和措施。

AI 智能化技术为地下矿井安全管理带来了新的机遇和挑战。通过在地下矿井中部署 AI 技术,可以实现安全管理的智能化、高效化和精准化,提高矿井的安全水平和生产效率。未来,随着 AI 技术的不断发展和应用,地下矿井安全管理将迎来更加美好的发展前景。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Together_CZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值