知行学思
码龄8年
求更新 关注
提问 私信
  • 博客:56,615
    56,615
    总访问量
  • 19
    原创
  • 32
    粉丝
  • 96
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:四川省
加入CSDN时间: 2017-09-22

个人简介:至繁归于至简。

博客简介:

LessIsMore.

查看详细资料
个人成就
  • 获得62次点赞
  • 内容获得7次评论
  • 获得238次收藏
  • 代码片获得744次分享
  • 原力等级
    原力等级
    2
    原力分
    167
    本月获得
    15
创作历程
  • 2篇
    2025年
  • 1篇
    2024年
  • 2篇
    2023年
  • 3篇
    2022年
  • 3篇
    2021年
  • 8篇
    2020年
成就勋章
TA的专栏
  • cms
    2篇
  • qt
    1篇
  • algo
  • exe
  • math
    6篇
  • debug
    3篇
  • optic
    1篇
  • markdown

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 0

兴趣领域 设置
  • Python
    pythondjangofastapipyqtpytestpip
  • Java
    javaspringspring bootmybatis
  • 编程语言
    pythonjavajavascriptgolang
  • 后端
    sqlmysqlnginxnode.js后端restful架构分布式中间件gateway
  • 人工智能
    opencv计算机视觉图像处理
创作活动更多

开源数据库 KWDB 社区征文大赛,赢取千元创作基金!

提交参赛作品,有机会冲刺至高2000元的创作基金,快来参与吧!

去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

【苹果cms 2】资源站动漫采集爬取

之前网站搭建好后还没有数据,通过各采集站教程可以导入数据,但是不能自定义,这里写下如何快速采集特定类型的资源,比如说动漫视频
原创
发布博客 16 小时前 ·
83 阅读 ·
5 点赞 ·
0 评论 ·
1 收藏

【苹果cms 1】本地影视资源站搭建

linux 上宝塔 和 1panel 搭建的教程很多,这是 win 本地搭建 maccms 的教程
原创
发布博客 17 小时前 ·
197 阅读 ·
5 点赞 ·
0 评论 ·
1 收藏

【油猴脚本】动漫网站弹幕播放

自动匹配加载动漫剧集对应弹幕并播放,目前支持樱花动漫、风车动漫
原创
发布博客 2024.07.02 ·
1250 阅读 ·
5 点赞 ·
0 评论 ·
5 收藏

node-sass 安装报错问题详解

最近下很多老项目都依赖 node-sass 这个库直接安装会报一堆错,提示你安装 python2、vs2013 等一堆东西,看着就头大网上一堆教程都不对,stackoverflow 给的教程也不尽人意找了半天教程、仔细看日志终于搞定。
原创
发布博客 2023.12.22 ·
551 阅读 ·
10 点赞 ·
0 评论 ·
9 收藏

Transmission Web 界面无法打开问题

再选择 Web interface。注意先设置安装路径到 D 盘。不然会默认安装到 C 盘。安装时未选择相应功能。
原创
发布博客 2023.07.15 ·
836 阅读 ·
0 点赞 ·
2 评论 ·
0 收藏

TensorRT 安装教程

〇、准备工作安装教程主要针对 Linux (Ubuntu 20.04)在安装前首先需要保证 CUDA 已安装(查看往期教程)一、使用 docker 镜像(推荐)tensorrt 镜像二、TensorRT 官方文档安装教程以下安装分别对应官方文档4.1. Debian Installation(推荐)下载nv-tensorrt-repo-ubuntu2004-cuda11.6-trt8.4.1.5-ga-20220604_1-1_amd64.debsudo apt-get&nbs
原创
发布博客 2022.09.17 ·
1553 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

CUDA 安装教程

安装教程主要针对 Linux (Ubuntu 20.04)一、使用 Docker 镜像(推荐)打包好的 cuda 镜像https://hub.docker.com/r/nvidia/cudahttps://catalog.ngc.nvidia.com/orgs/nvidia/containers/cuda/tagscuda 镜像的 dockerfile 文件https://gitlab.com/nvidia/container-images/cudaThree flavors of imag
原创
发布博客 2022.09.17 ·
3277 阅读 ·
2 点赞 ·
0 评论 ·
11 收藏

光猫超级账号密码、宽带账号密码 获取

光猫超级账号密码、宽带账号密码 获取目的与起因租房宽带是电信的 Ipv6,之前笔记本使用 Ipv6 地址可以直接被手机通过移动网络无需中转进行远程桌面连接的。目前尝试了在局域网内是可以实现的,应该是电信屏蔽了3389端口。在光猫路由器修改电信防火墙等级为低,也不能通过 ping6 连接通。于是想路由器桥接光猫直接拨号,然后路由器开放相应端口。桥接光猫拨号需要以下:光猫超级账号、密码宽带拨号账号、密码光猫型号:PT925G 友华通信查看底部标签获取光猫普通账号密码。浏览器输入网关地址登录
原创
发布博客 2022.07.03 ·
18388 阅读 ·
5 点赞 ·
1 评论 ·
11 收藏

This application failed to start because it could not find or load the Qt platform plugin “windows“

This application failed to start because it could not find or load the Qt platform plugin “windows”,Qt环境变量将D:\Qt\Qt5.14.2\5.14.2\mingw73_64\plugins路径下的 platforms 整个文件夹放置在相应的build debug/release 文件夹下但其实这是一种治标不治本的方法,真实原因是 Qt 没有加入系统环境变量。将一下路径加入pathD:\Qt\
原创
发布博客 2021.05.12 ·
291 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

error: ‘float.h‘ file not found,OpenCV运行有误

error ‘float.h’ file not found,OpenCV运行有误配置系统环境变量E:\0-Technic\4-OpenCV\OpenCV-410\opencv-4.1.0\build\install\x64\mingw\bin这里的OpenCV是用 MinGW 730_64 编译器生成的版本,拥有with Qt功能(支持imshow函数显示窗口具有图像缩放等拓展功能),与传统exe版本和python pip版本不同。...
原创
发布博客 2021.05.12 ·
1145 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

VS2015 编译 yolo cpp dll 报错 MSB3721 11个error “activation_kernels.cu”

VS2015 编译 yolo cpp dll 报错 MSB3721 11个error “activation_kernels.cu”11个error详细的位置activation_kernels.cu" />avgpool_layer_kernels.cu" />blas_kernels.cu" />col2im_kernels.cu" />convolutional_kernels.cu" />crop_layer_kernels.cu" />decon
原创
发布博客 2021.04.12 ·
497 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

DOP Dilution Of Precision;多点定位 Multilateration;测向交叉定位 三角定位;DAE;无人机

DOP Dilution Of Precision通常为了描述定位误差与伪距误差之间的关系,定义如下精度因子来衡量测量的结果:几何精度因子(Geometric Dilution Of Precision GDOP)位置精度因子(Position(3D) Dilution Of Precision PDOP)水平精度因子(Horizontal Dilution Of Precision HDOP)垂直精度因子(Vertical Dilution Of Precision VDOP)钟差精度因子(T
原创
发布博客 2020.12.06 ·
2368 阅读 ·
3 点赞 ·
0 评论 ·
20 收藏

直接线性变换(DLT) 、P3P问题;RANSAC;相机标定;对极约束、本质矩阵(Essential Matrix)

直接线性变换(Direct Linear Transform,DLT)s[uv1]=[r11r12r13txr21r22r23tyr31r32r33tz][XwYwZw1]s\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} =\begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{3
原创
发布博客 2020.12.05 ·
2220 阅读 ·
0 点赞 ·
0 评论 ·
9 收藏

工程数学基础 考试 要点 复习:矩阵论,数值计算

v向量的1-范数∥x∥1=∑k=1n∣ξk∣\|x\|_1=\sum_{k=1}^n|\xi_k|∥x∥1​=∑k=1n​∣ξk​∣向量的2-范数∥x∥2=(∑k=1n∣ξk∣2)12\|x\|_2=(\sum_{k=1}^n|\xi_k|^2)^\frac12∥x∥2​=(∑k=1n​∣ξk​∣2)21​向量的\infty-范数∥x∥∞=max⁡1≤k≤n∣ξk∣\|x\|_\infty=\max_{1\leq k \leq n}|\xi_k|∥x∥∞​=max1≤k≤n​∣ξk​∣列范数=
原创
发布博客 2020.12.04 ·
1015 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

等距变换、欧式变换、相似变换、仿射变换(Affine)射影变换(Projective);单应变换、透视变换

等距变换(Isometries)[x′y′1]=[σcos⁡θ−sin⁡θx0σsin⁡θcos⁡θy0001][xy1]\left[\begin{matrix}x'\\y'\\1\\\end{matrix}\right]=\left[\begin{matrix}\sigma\cos\theta&-\sin\theta&x_0\\\sigma\sin\theta&\cos\theta&y_0\\0&0&1\\\end{matrix}\right]\lef
原创
发布博客 2020.12.04 ·
2753 阅读 ·
5 点赞 ·
2 评论 ·
21 收藏

Qt图像预览工具,可随鼠标位置缩放、拖动,有缩略图显示相对位置。移植自OpenCV的HighGUI中window_QT.cpp

从下面OpenCV中文件移植E:\0-Technic\4-OpenCV\OpenCV-410\opencv-4.1.0\modules\highgui\src\window_QT.cppQt New FunctionsHigh-level GUI主要为以下功能移植:1、 图像按鼠标所在位置进行缩放2、 滚轮实现缩放3、 拖动并有预览窗格4、 缩放后仍能鼠标获取图像像素位置class DefaultViewPort: public QGraphicsView//,public
原创
发布博客 2020.11.27 ·
811 阅读 ·
1 点赞 ·
1 评论 ·
5 收藏

OpenCV移植window_QT.cpp

发布资源 2020.11.27 ·
rar

镜头基础知识

光学镜头的主要参数焦距主点到焦点的距离称为光学系统的焦距,这是镜头的重要参数之一,它决定了像与实际物体之间的比例。在物距一定的情况下,要得到大比例的像,则要求选用长焦距的镜头。如图2所示,自物方主点H到物方焦点F的距离称为物方焦距或前焦距f;类似地,自像方主点H '到物方焦点F '的距离称为物方焦距或前焦距f '。其定义具有方向性,如果主点到焦点的方向与光线的方向一致,则焦距为正;反之则为负。图2中所示的情况,像方焦距f '>0,物方焦距f '<0。如果系统两侧的介质相同,则f '=-.
原创
发布博客 2020.11.11 ·
10563 阅读 ·
8 点赞 ·
0 评论 ·
43 收藏

Levenberg-Marquardt method伪代码

K. Madsen, H. B. Nielsen, O. Tingleff, Methods for Non-Linear Least Squares ProblemsAlgorithm 3.16. Levenberg-Marquardt methodbegink:=0;v:=2;x:=x0k:=0; v:=2; x:=x_0k:=0;v:=2;x:=x0​A:=J(x)TJ(x);g:=J(x)Tf(x)A:=J(x)^TJ(x); g:=J(x)^Tf(x)A:=J(x)TJ(x);g:=J(x
原创
发布博客 2020.10.28 ·
667 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

三维旋转矩阵;东北天坐标系(ENU);地心地固坐标系(ECEF);大地坐标系(Geodetic);经纬度对应圆弧距离

旋转矩阵Givens rotation 逆时针[c−ssc]\begin{bmatrix}c &-s\\s &c\end{bmatrix}[cs​−sc​]Jacobi rotation 顺时针[cs−sc]\begin{bmatrix}c &s\\-s &c\end{bmatrix}[c−s​sc​]箭头朝里朝外,顺时针、逆时针,旋转角的正负高中物理 磁场方向 右手法则左手系、右手系左乘、右乘左乘: 坐标系不动,点动,则左乘。右乘: 点不动,坐标系动,则
原创
发布博客 2020.10.28 ·
7448 阅读 ·
12 点赞 ·
0 评论 ·
99 收藏
加载更多