关于python中浅拷贝跟深拷贝的理解

    今天简单谈一下浅拷贝跟深拷贝,其实这两个拷贝都是相对于可变型数据的,当不可变数据被浅拷贝跟深拷贝后,他们都是取内存地址的引用.保证了数据的唯一性.

     (不可变数据类型的优点就是内存中不管有多少个引用,相同的对象只占用了一块内存,节省时间,节省空间.但是它的缺点就是当需要对变量进行运算从而改变变量的引用的对象的值时,由于是不可变的数据类型,所以必须创建新的对象,这样就会使得一次次的改变创建新的对象,不过不再使用内存会被垃圾回收器回收.)

当数据,类型有嵌套时,浅拷贝只会拷贝最顶层的那个数据类型.此时不能保证数据的唯一性.而深拷贝是从内到外全部的数据跟地址拷贝一份并且开辟新的存储空间,如果嵌套了不可变类型的数据类型时.深拷贝也是动不了这种东西的.

示范代码如下:

 

import copy
a=[11,22]
b=[33,44]
d=[a,b]

"""这里使用了浅拷贝只是拷贝了最顶层的数据,开辟新的存储空间接收,但是里面的数据只是引用原始数据的地址eryi.不能保证可变数据的唯一性"""
c=copy.copy(d)
# print(id(c[0]))  # id 18723784
# print(id(a))  # id 18723784
# print(id(c))  7364552
# print(id(d))  8867272

"""深拷贝时"""  # 深拷贝时是从外到里都拷贝数据跟地址,前提是可变数据类型.
e=copy.deepcopy(d)
print(id(e[0]))  # 12562504
print(id(a))  # 12563208
内容概要:文章介绍了DeepSeek在国内智能问数(smart querying over data)领域的实战应用。DeepSeek是一款国内研发的开源大语言模型(LLM),具备强大的中文理解、推理和生成能力,尤其适用于企业中文环境下的智能问答、知识检索等。它具有数据可控性强的特点,可以自部署、私有化,支持结合企业内部数据打造定制化智能问数系统。智能问数是指用户通过自然语言提问,系统基于结构化或非结构化数据自动生成精准答案。DeepSeek在此过程中负责问题理解、查询生成、多轮对话和答案解释等核心环节。文章还详细展示了从问题理解、查询生成到答案生成的具体步骤,并介绍了关键技术如RAG、Schema-aware prompt等的应用。最后,文章通过多个行业案例说明了DeepSeek的实际应用效果,显著降低了数据使用的门槛。 适合人群:从事数据分析、企业信息化建设的相关从业人员,尤其是对智能化数据处理感兴趣的业务和技术人员。 使用场景及目标:①帮助业务人员通过自然语言直接获取数据洞察;②降低传统BI工具的操作难度,提高数据分析效率;③为技术团队提供智能问数系统的架构设计和技术实现参考。 阅读建议:此资源不仅涵盖了DeepSeek的技术细节,还提供了丰富的实战案例,建议读者结合自身业务场景,重点关注DeepSeek在不同行业的应用方式及其带来的价值。对于希望深入了解技术实现的读者,可以进一步探索Prompt工程、RAG接入等方面的内容。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值