【第4条】避免创建不必要的对象

此条在中文版第二版中被译为了“避免创建不必要的对象”,用此更加严谨了。

 

此条认为重复使用同一对象,比每次需要时都创建一个功能上相等价的新对象更好。如果对象是非可变的(见【第13条】),那么他总是可以被重用的。

 

一例子是:

String s1 = "Hello World !";
........  // 其他一些列代码
String s2= "Hello World !";

 虽然看起来s2是新创建的一个新对象,但是由于String是非可变的,所以 String s2= "Hello World !";
 等同于 String s2 = s1; 实际内存中并没有新开辟一块空间,而是将s2的地址指针指向s1的空间地址。

 

但是如果写成  String s2 = new String(s1); 则系统会为s2新开辟一块内存空间,这是我们所不希望看到的。

进而举个更为极端的反例: String s = new String("Hello !");

由于实参"Hello !"本身就是一个String的实例,这时候实际上已经创建了一个String的实例了,再用之作为new String()的参数,就再次创建了一个String实例给s,于是内存的消耗就Double了!

 

    对于提供了静态工厂方法(见【第1条】)和构造函数的非可变类,你通常可以利用静态工厂方法而不是构造函数,以避免重复创建对象。例如,Boolean.valueOf(String)几乎总是优先于构造函数Boolean(String)的。因为构造函数每次被调用都会创建一个新的对象,而静态工厂方法从来不要求这样做。

 

    再有就是那些已知不会被修改的对象,它们一旦被计算出来就不再变化,可以随时使用,而不必每次使用前再次计算。例如,有一个SystemInfo类,里面有保存和取得系统信息的域和方法。为了简单我们认为只有一个用于获取和保持CPUID的方法和域。如果这个类写的不好的话,可能在每次调用 getCPUID()时,都要重新创建SystemInfo中的cpuId,重新获取,甚至重新创建一个SystemInfo类;而好的代码,是在第一次调用时获取,并保持起来,之后再次调用时只是返回就可以了。

以下是我的一段真实代码中的截取:

public class SystemInfo {

  private static final SystemInfo INSTANCE = new SystemInfo();
  private static List<String> NULL_STRING_LIST;   // 应该是一个final常量,但由于这里的执行顺序在构造函数之后,所以要在被构造函数调用的方法中使用这个常量就不可以了,所以才这样写

   // 是用List是因为CPU可能不止一个
   private List<String> cpuIds;

  /**
   * 这是一个私有的构造函数 目的是禁止此类被外部实例化,因为这是一个单例模式
   */
  private SystemInfo() {
     NULL_STRING_LIST = new ArrayList<String>();
    this.cpuIds = getCPUIDs();
  }

  public static SystemInfo getInstance() {
    return INSTANCE;
  }

  public List<String> getCPUID() {
    return this.cpuIds;
  }
  
  private List<String> getCPUIDs() {
    try {
      return Arrays.asList(...);
    } catch (Exception e) {
      return NULL_STRING_LIST; // 见【第27条】返回零长度的数组而不是null,推想一下ArrayList也是同理
    }
  }
}

   

使用方法: String myCpu = SystemInfo.getInstance().getCPUID();

这个例子综合了【前4条】的知识,并且还包括了【第27条】,是我能想出的比较好的例子了。

【第1条】它提供了静态工厂方法,用于代替公有构造函数

【第2条】它使用私有构造函数来强化它是个单例模式

【第3条】它使用私有构造函数来强化不可实例化的能力(但与第3条不完全相同,它允许内部实例化一次)

【第27条】异常时返回零长度的数组而不是null,避免使用者需要过多的保护性代码

 

 

 进而这段代码的一个细微变形版本如下,不再是单例模式,而是不可实例化的工具类了。(是【第2条】的进一步,完全满足【第3条】

public class SystemInfo {

  private static final SystemInfo INSTANCE = new SystemInfo();
  private static final List<String> NULL_STRING_LIST = new ArrayList<String>();

   // 是用List是因为CPU可能不止一个
   private static List<String> cpuIds;

  /**
   * 这是一个空的私有的构造函数 目的是禁止此类被实例化,因为这是一个工具类  */
   private SystemInfo() {
   }

   static{
      cpuIds = getCPUIDs();
   }

  public static SystemInfo getInstance() {
    return INSTANCE;
  }

  public List<String> getCPUID() {
    return cpuIds;
  }
  
  private static List<String> getCPUIDs() {
    try {
      return Arrays.asList(...);
    } catch (Exception e) {
      return NULL_STRING_LIST; // 见【第27条】返回零长度的数组而不是null,推想一下ArrayList也是同理
    }
  }
}

 

以上两段哪种写法更好呢?可能仁者见仁吧,实际中我使用的是后者,而且是把这个类实现了一个接口,因为考虑到可能会有不同版本的“取得系统信息”的方法(Win32的、Linux的、JNI的...)。

而且当使用Spring的注入后,getInstance()方法 和 INSTANCE 常量也不再是必须的了(Spring的注入不在现在的讨论之内)

 

 

 

【Effective Java 学习笔记】系列连载专题请见:
http://tonylian.iteye.com/categories/64208

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足件2或件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值