通用的分布式计算框架,为了降低学习和使用门槛,便于用户直观理解,一般会尽量简化上层API抽象(姑且定义为逻辑层),RDD之于Spark就是最核心的逻辑层抽象。然而,当你深入框架内部Runtime实现(对应来说就是物理层),通常会进入另一个世界,透过现象看本质,豁然开朗。对Spark RDD来说莫不如此,下面让我们来看看它在物理层的另一面。
首先,我们来回顾下RDD在逻辑层的表象,无非这几点,了解Spark的人都很清楚:
- RDD字面理解Resilient Distributed Dataset,指的是利用分布式内存资源来存储的数据集
- RDD是immutable的,每一次transform都会生成新的RDD
- 一个job的所有RDD,会根据是否需要做shuffle,被划分到不同的stage
- RDD计算是lazy方式,只有action才会触发job产生,transform只会记录元数据与依赖关系
- 如果一个RDD计算出错,会根据依赖关系从上游RDD经过重新计算来自动恢复
然而,如果你仔细思考下逻辑层视角的理解,很容易会发出以下两点疑问:
- 既然每次transform都需要生成新的RDD,那么一个job中很可能会产生大量的RDD。而如果每个RDD都需要占有内存资源,是不是很快就会吃掉所有内存