Spark RDD计算机制剖析

本文深入探讨Spark RDD的物理层,解答关于RDD内存占用和计算顺序的疑问。RDD计算是lazy的,由DAGScheduler调度,通过递归构建和提交stage。TaskScheduler提交task,ShuffleMapTask与ResultTask执行计算。RDD.iterator()触发计算,以iterator级联方式避免中间数据存储和多次遍历。
摘要由CSDN通过智能技术生成

通用的分布式计算框架,为了降低学习和使用门槛,便于用户直观理解,一般会尽量简化上层API抽象(姑且定义为逻辑层),RDD之于Spark就是最核心的逻辑层抽象。然而,当你深入框架内部Runtime实现(对应来说就是物理层),通常会进入另一个世界,透过现象看本质,豁然开朗。对Spark RDD来说莫不如此,下面让我们来看看它在物理层的另一面。

首先,我们来回顾下RDD在逻辑层的表象,无非这几点,了解Spark的人都很清楚:

  • RDD字面理解Resilient Distributed Dataset,指的是利用分布式内存资源来存储的数据集
  • RDD是immutable的,每一次transform都会生成新的RDD
  • 一个job的所有RDD,会根据是否需要做shuffle,被划分到不同的stage
  • RDD计算是lazy方式,只有action才会触发job产生,transform只会记录元数据与依赖关系
  • 如果一个RDD计算出错,会根据依赖关系从上游RDD经过重新计算来自动恢复
    在这里插入图片描述

然而,如果你仔细思考下逻辑层视角的理解,很容易会发出以下两点疑问:

  • 既然每次transform都需要生成新的RDD,那么一个job中很可能会产生大量的RDD。而如果每个RDD都需要占有内存资源,是不是很快就会吃掉所有内存
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值