动图:http://dbs.cloudcv.org/captioning

- Generate-Mode
根据语义进行输出(Seq2Seq) - Copy-Mode
根据文本位置copy,拿出encoder出现过的词(copy-model)
adv : 复制了一些输入词,解决了一些OOV的问题

bp :是偏置向量
激活函数sigmoid : 取值范围 (0,1)。转换成概率。
xt :是decoder的预测下一词的输入,比如beat
(1-Pgen)把encoder的输入词,出现的OOV词(未登录词),加入进来。

本文探讨了自然语言处理中CopyNet和PGN模型的优化,包括Encoder和Decoder的改进,如使用Hierarchical Attention。针对序列模型的计算效率问题,提出使用CNN。在训练策略上,介绍了Cross-Entropy Training和Scheduled Sampling。同时,文章深入讲解了Beam Search的改进,如Maximun Mutual Information和Diverse Beam Search,以解决输出重复和多样性问题。
订阅专栏 解锁全文
370

被折叠的 条评论
为什么被折叠?



