洛谷P1028 数的计算(入门递推)

这道题目要求计算具有特定性质的自然数个数,即每次在原数左侧加上不超过原数一半的自然数,直至无法再加。通过递推关系式`ans[n] = ans[n/2] + ans[n/2-1] + ... + ans[1]`,可以求得答案。给定输入自然数n (n≤1000),输出具有该性质的数的个数。示例给出了部分输入输出样例,并提示在解决此类问题时,手动计算可以帮助找到规律。
摘要由CSDN通过智能技术生成

题目描述

我们要求找出具有下列性质数的个数(包含输入的自然数 nn ):

先输入一个自然数 nn ( n \le 1000n≤1000 ),然后对此自然数按照如下方法进行处理:

  1. 不作任何处理;

  2. 在它的左边加上一个自然数,但该自然数不能超过原数的一半;

  3. 加上数后,继续按此规则进行处理,直到不能再加自然数为止.

输入输出格式

输入格式:

 

11 个自然数 nn ( n \le 1000n≤1000 )

 

输出格式:

 

11 个整数,表示具有该性质数的个数。

 

输入输出样例

输入样例#1: 复制

6

输出样例#1: 复制

6

说明

满足条件的数为

6,16,26,126,36,136

 

题目分析:

当不明所以的时候,建议先手算。由于我们发现每个数都只能取小于等于它本身一半的数放在左边,所以:

按照样例,当n = 1 时    ans = 1;

                     n = 2 时,ans = 1 + f[1]

                     n = 3时,ans = 1 + f[2] + f[1]

     

<think>嗯,我现在要解决洛谷的P1028题目,用C++来实现。首先,我得仔细看一下题目要求。题目大意是说,对于一个自然n,然后按照以下方法生成列,直到不能再生成下一个为止。生成的规则是:比如n=6,那么列就是6, 3, 2, 1。具体来说,当n是偶时,下一个是n/2;如果是奇,可能是(n-1)/2或者更复杂的情况?或者可能题目里的规则是更特定的?可能我之前记错了,所以需要重新确认题目描述。 不过,根据洛谷P1028的题目名称,可能是指“计算”。根据我的记忆,这道题的规则是这样的:给出自然n,然后构造一个列,列中的每个的左边部分可以加上不超过它一半的。例如,n=6时,可能的列包括6本身,然后在左边加上3(因为6的一半是3),接着3可以加1(因为3的一半是1.5,取整后是1),然后1不能再加了,所以总共有6、36、136、316、1316这几种情况?或者可能题目中的规则不同? 或者可能题目中的规则是,给定一个自然n,构造一个满足前一个能生成后一个的序列,每个都是前一个的左边添加一个,这个添加的不能超过原的一半。例如,n=6时,可以生成6,然后左边可以添加3,得到36;或者添加2(因为6的一半是3,所以可以添加3、2、1?或者可能只能添加不超过一半的,比如n的左边只能添加的必须≤n/2,并且生成新的,比如n=6,添加3得到36,然后添加1得到136,或者添加1到3的前面得到1336?这可能比较复杂。 或者可能题目中的计算方式是不同的,比如题目要求的是的“组成”方式的量,例如当输入n时,输出有多少种不同的列满足条件。比如,当n=6时,可能的合法目是多少? 这个时候,我需要明确题目到底要求什么。假设题目是计算,输入n,输出满足条件的目。例如,当n=6时,总共有6种可能?或者不同的计算方式。 这个时候,我需要查找题目P1028的具体描述。但由于现在无法访问外部资源,只能根据经验和记忆来推断。 根据常见的类似题目,可能的规则是:对于一个n,可以生成前面的,例如,在左边添加一个,该不超过当前的一半。例如,n=6,可以生成3、2、1,然后每个生成的又可以继续生成其一半的,直到不能生成为止。而题目要求的是这样的列的总。例如,当n=6时,总共有6种不同的列。 这时候,问题转化为求对于给定的n,这样的目是多少。这时候,我们需要找出递推公式或者动态规划的方法来计算。 例如,假设f(n)表示n的目。那么对于n来说,可以生成的所有可能的前面添加的都是i,其中i <=n/2。每个i对应的目是f(i)。所以,f(n)=1 + sum_{i=1}^{floor(n/2)} f(i)。其中,1表示n本身作为一个列的情况,sum部分是每个i对应的目之和。 比如,当n=6时,floor(6/2)=3。所以sum部分是f(1)+f(2)+f(3)。而初始条件可能f(0)=0,f(1)=1(因为无法再分割),f(2)=1+f(1)=2,f(3)=1+f(1)=2,以此类推。这时候,计算f(6)=1 + (f(1)+f(2)+f(3))=1 + (1+2+2)=6,这与例子中的结果一致。 所以正确的递推式应该是f(n) = sum_{i=0}^{floor(n/2)} f(i),其中f(0)=1?或者可能初始条件需要调整。比如,当n=1时,只能有自己,所以f(1)=1。当n=2时,可以分割为2和1,所以f(2)=1 + f(1)=2。同理n=3时,floor(3/2)=1,所以sum f(1)=1,所以总共有1+1=2。这可能与之前的例子相符。 所以递推式应该是f(n) = 1 + sum_{i=1}^{floor(n/2)} f(i)。其中每个i是n的可能的前半部分,所以每个i对应的目是f(i)。例如,当n=6时,sum是f(1)+f(2)+f(3)=1+2+2=5,加上1得到6。这似乎是对的。 因此,我们的任务就是计算f(n),其中f(n)=1 + sum_{i=1}^{k} f(i),其中k = floor(n/2)。初始条件:当n=0时,可能f(0)=0,或者根据具体情况调整。 那么如何用动态规划的方法来计算这个递推式呢?例如,对于输入的n,我们可以预先计算f组,从f[0]到f[n]。 例如,初始化一个组dp,其中dp[i]表示i对应的目。初始化dp[0]=0,dp[1]=1。对于i>=2的情况,dp[i] = 1 + sum(dp[1..i/2])。例如,当i=2时,i/2=1,所以sum(dp[1})=1,dp[2}=1+1=2。i=3,i/2=1,sum=1,dp[3}=2。i=4时,i/2=2,sum=dp[1]+dp[2}=1+2=3,dp[4}=1+3=4?或者可能i=4的目是1 + sum(1,2) = 4?这需要验证。 比如,当n=4时,可能的目应该是4种:4, 14, 24, 124。对吗?那这样的话,dp[4}=4。而根据公式,dp[4} = 1 + sum(dp[1}+dp[2})=1 + (1+2)=4,符合。那这个递推式是正确的。 所以,现在问题转化为如何高效计算这个dp组。因为对于每个i来说,要计算从1到i/2的和。如果直接计算的话,时间复杂度是O(n^2),因为每个i需要遍历i/2次。例如,当n=1000时,总次大约是1000*500=5e5,这在时间上是可行的,因为题目中的n可能比较小。例如,题目中的n的范围是n<=1000或者更大?假设题目中的n的范围是足够小的,那么这个方法是可行的。 那我们可以用动态规划的方法,并且用一个前缀和组来优化求和的过程。比如,维护一个前缀和组sum,其中sum[i]表示dp[1]+dp[2}+...+dp[i]。这样,当计算dp[i]时,sum_{j=1}^{k} dp[j} = sum[k] - sum[0},假设sum[0}=0。这样可以将每次求和的O(k)时间降到O(1)。 具体来说,我们可以初始化sum[0]=0。然后对于每个i>=1,sum[i] = sum[i-1] + dp[i]。这样,当计算dp[i]时,k= floor(i/2),则sum[k}就是前面的总和。因此,dp[i] = 1 + sum[k]。这样,时间复杂度可以降到O(n)。 例如,当i=6时,k=3,sum[3}=dp[1}+dp[2}+dp[3}=1+2+2=5。因此,dp[6}=1+5=6。符合之前的例子。 那现在,具体的实现步骤是: 1. 初始化dp组,其中dp[0}=0,dp[1}=1。 2. 初始化sum组,sum[0}=0,sum[1}=1。 3. 对于i从2到n,依次计算k = i//2。然后dp[i} = 1 + sum[k}。sum[i} = sum[i-1} + dp[i}。 这样就可以在O(n)的时间内完成计算。 现在,用C++实现这个思路。例如,输入n,输出dp[n}。 需要注意的是,当n=0的时候,可能需要处理特殊情况,但题目中的n是自然,可能n>=1。 例如,当n=1时,输出1;当n=2时,输出2;当n=3时,输出2;n=6时,输出6。 那现在,代码的大致结构是: 读取n的值。如果n=0,输出0? 但根据题目中的描述,n是自然,可能n>=1。所以代码中假设n>=1。 初始化一个组dp,大小为n+1。dp[0}=0,dp[1}=1。 sum组同样,sum[0}=0,sum[1}=1。 然后循环i从2到n: k = i / 2; // C++中整除法,例如i=3,i/2=1。 dp[i} = 1 + sum[k]; sum[i} = sum[i-1} + dp[i}; 最后输出dp[n}。 这样应该可以得到正确结果。 那现在,测试这个逻辑是否正确。例如,当i=2时,k=1。sum[1}=1. dp[2}=1+1=2。sum[2}=1+2=3. i=3时,k=1. sum[1}=1. dp[3}=2. sum[3}=3+2=5. i=4,k=2. sum[2}=3. dp[4}=1+3=4. sum[4}=5+4=9. i=5,k=2. sum[2}=3. dp[5}=4. sum=9+4=13. i=6,k=3. sum[3}=5. dp[6}=6. sum=13+6=19. 所以,当n=6时,dp[6}=6,正确。 那这个方法是正确的。所以代码的大致结构是: #include <iostream> using namespace std; int main() { int n; cin >> n; if (n == 0) { cout << 0 << endl; return 0; } int dp[n+1]; int sum[n+1]; dp[0] = 0; sum[0] = 0; dp[1] = 1; sum[1] = 1; for (int i = 2; i <= n; ++i) { int k = i / 2; dp[i] = 1 + sum[k]; sum[i] = sum[i-1] + dp[i]; } cout << dp[n] << endl; return 0; } 但是,这里可能存在一个问题,当i较大的时候,比如n=1000,组的大小是否会被正确分配?因为在C++中,组的大小必须是编译时常量,除非使用动态分配。但这里n是输入的变量,所以这样的组声明可能不被允许。例如,在C++标准中,变长组(VLA)是C99的特性,而C++标准不支持。因此,用int dp[n+1]可能在某些编译器(如GCC扩展)中可行,但为了更好的可移植性,应该用动态组,例如vector或者用new来分配。 因此,需要修改代码,使用动态内存分配或者vector。 例如: #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; if (n == 0) { cout << 0 << endl; return 0; } vector<int> dp(n+1, 0); vector<int> sum(n+1, 0); dp[1] = 1; sum[1] = 1; for (int i = 2; i <= n; ++i) { int k = i / 2; dp[i] = 1 + sum[k]; sum[i] = sum[i-1] + dp[i]; } cout << dp[n] << endl; return 0; } 这样使用vector可以避免VLA的问题,并且更符合标准C++的写法。 测试这个代码是否正确。例如,输入6时,输出6。输入4时,输出4。输入3时,输出2。这应该都是正确的。 所以,这个就是解决洛谷P1028的C++代码。</think>为了解决洛谷P1028计算”问题,我们需要计算满足特定条件的目。具体规则是:给定自然 $n$,构造列时可以在当前左侧添加不超过其一半的,直到无法添加为止。我们需要输出所有可能的目。 ### 方法思路 1. **问题分析** 设 $f(n)$ 表示 $n$ 的合法目。对于每个 $n$,可以生成所有可能的 $i$($i \leq \lfloor n/2 \rfloor$),因此递推公式为: $$f(n) = 1 + \sum_{i=1}^{\lfloor n/2 \rfloor} f(i)$$ 其中,$1$ 表示 $n$ 自身作为一个列的情况,求和部分表示添加左侧后的所有可能情况。 2. **动态规划优化** 直接计算每个的和会导致时间复杂度较高。通过维护前缀和组 $sum$,可以将求和操作优化到 $O(1)$,从而将整体复杂度降为 $O(n)$。 ### 解决代码 ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<int> dp(n + 1, 0); // dp[i]表示i对应的目 vector<int> sum(n + 1, 0); // 前缀和组,sum[i] = dp[1]+dp[2]+...+dp[i] dp[1] = 1; sum[1] = 1; for (int i = 2; i <= n; ++i) { int k = i / 2; dp[i] = 1 + sum[k]; // 当前目为1(自身)加上所有可添加目之和 sum[i] = sum[i - 1] + dp[i]; // 更新前缀和 } cout << dp[n] << endl; return 0; } ``` ### 代码解释 1. **初始化组** `dp` 组存储每个的合法目,`sum` 组存储前缀和以优化计算。 2. **递推计算** 遍历 $2$ 到 $n$,根据递推公式更新 `dp[i]`,并同步更新前缀和组 `sum`。 3. **输出结果** 最终 `dp[n]` 即为所求答案。 该方法通过动态规划和前缀和优化,高效地解决了问题,时间复杂度为 $O(n)$,适用于较大的输入范围。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值