LauJames
码龄11年
求更新 关注
提问 私信
  • 博客:52,455
    社区:1,503
    53,958
    总访问量
  • 11
    原创
  • 5
    粉丝
  • 19
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖北省
加入CSDN时间: 2014-10-04
博客简介:

UESTC_V的博客

查看详细资料
个人成就
  • 获得38次点赞
  • 内容获得16次评论
  • 获得33次收藏
  • 博客总排名1,543,765名
创作历程
  • 1篇
    2021年
  • 2篇
    2019年
  • 9篇
    2018年
  • 1篇
    2017年
TA的专栏
  • linux
    3篇
  • 深度学习
    6篇
  • Tensorflow
    5篇
  • 算法
    4篇
  • docker
    1篇
  • 计算机网络
    1篇
  • python
    6篇
  • numpy
    1篇
  • 开发
    1篇

TA关注的专栏 1

TA关注的收藏夹 0

TA关注的社区 3

TA参与的活动 0

创作活动更多

王者杯·14天创作挑战营·第2期

这是一个以写作博客为目的的创作活动,旨在鼓励码龄大于4年的博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见https://bbs.csdn.net/topics/619735097 2、文章质量分查询:https://www.csdn.net/qc 我们诚挚邀请你们参加为期14天的创作挑战赛!

83人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

利用tf.ragged.boolean_mask完成选择mask压缩tensor

现有如下输入:1. [Batch_size, Seq_len, N_classes]的tensor T2. [Batch_size, Seq_len]的mask矩阵 M需求:根据M中的值来mask T,并去掉被mask掉的值实际场景:主要是现在有一个对话的每个时刻的状态,和角色(0/1),需要取出角色为1的所有utterances的状态,在此基础上选取最后一个角色为1的utterance的状态问题点:若使用tf.boolean_mask,则会得到[?, N_classes], ?代表
原创
发布博客 2021.04.30 ·
480 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

Ubuntu16.04.3LTS+CUDA8.0+cudnn5.1+tensorflow-gpu(1.2)安装配置信息汇总

花了一周的时间,终于把一块750Ti的显卡成功配置到了机器上,网上相关信息太多,这里集合一下各个教程的有用信息,希望能够帮助到各位GPU核武器玩家Ubuntu 16.04.3 LTS基本安装由于是Server版,直接参考信息较少,按照大部分教程也可以完成安装。 我在安装的时候主要参考的是这位同行的教程:首先利用WinSetupFromUSB这个软件(其它软件也可...
原创
发布博客 2017.10.23 ·
412 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

tf.contrib.layers.dropout和tf.nn.dropout的不同导致的bug

今天在写RNN的时候,Dense layer需要添加一个dropout,至于keep_prob按道理是需要用一个placeholder:self.dropout_keep_prob = tf.placeholder(tf.float32, name='keep_prob')来占位,以便于在训练/测试的时候区分。利用feed_dict 来传递 keep_prob的值 看别人的教程,一模一样
原创
发布博客 2018.01.21 ·
4658 阅读 ·
6 点赞 ·
9 评论 ·
3 收藏

tensorflow 利用expand_dims和squeeze扩展和压缩tensor维度

tensorflow 利用expand_dims和squeeze扩展和压缩tensor维度在利用tensorflow进行文本挖掘工作的时候,经常涉及到维度扩展和压缩工作。比如对文本进行embedding操作完成之后,若要进行卷积操作,就需要对embedded的向量扩展维度,将[batch_size, embedding_dims]扩展成为[batch_size, embedding_dims,...
原创
发布博客 2018.05.14 ·
9096 阅读 ·
5 点赞 ·
3 评论 ·
10 收藏

python 不用加号实现整数加法运算

参考地址1:不用加号实现加法!(C++) 参考地址2:计算机组成原理——加法直接上代码:import numpy as npdef int_add2(a, b): a1 = np.int8(a) b1 = np.int8(b) if 0 == b1: return a1 cor = a1 ^ b1 cand = a1 ...
原创
发布博客 2018.05.17 ·
2567 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

python中的*、np.dot和np.multiply辨析

在之前学习别人开源代码的时候,对于python中的*、np.dot()和np.multiply()具体结果产生了疑惑,遂去了解了一下相关说明,并实验了一下,结合别人的博客,这里进行总结建议:当我们需要在python中进行像matlab中的矩阵运算时,最好将ndarray转化成matrix,以免出错* 号运算符 numpy arrays consistently abid...
原创
发布博客 2018.07.28 ·
2626 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

回文链表——O(n)时间复杂度和O(1)空间复杂度解法

参考链接:234. Palindrome Linked List [easy] (Python) 这个博主总结了三种解法: 1. 将单链表的节点值记录到一个数组中,判断数组是否回文;(或通过一次遍历将单链表拓展成双向链表,再判断是否回文。 )——时间 O(n),空间O(n) 2. 判断回文主要是前半部分和后半部分的比较,若能将前半部分压栈,再依次出栈与后半部分比较,则可判断是否...
原创
发布博客 2018.08.15 ·
1656 阅读 ·
1 点赞 ·
1 评论 ·
0 收藏

比os.path更高级的路径对象pathlib

pathlib中的Path类继承自PurePath,对PurePath中的部分方法进行了重载,相比于os.path有更高的抽象级别几个特点路径连接便捷正则匹配相关文件,返回可迭代可打开的文件对象示例1from pathlib import Pathroot = Path("../PycharmProject")config_dir = root/Path(...
原创
发布博客 2018.08.23 ·
911 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

tornado 静态文件路径绑定细节

第一次用tornado搭具有css和js样式动作的demo系统,在css/js这些文件引用路径引入的地方,坑了四小时,特此记录并提醒萌新...
原创
发布博客 2018.10.18 ·
3435 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

Tensorflow版本和cudnn版本不对应问题解决

E tensorflow/stream_executor/cuda/cuda_dnn.cc:343] Loaded runtime CuDNN library: 7.0.5 but source was compiled with: 7.2.1. CuDNN library major and minor version needs to match or have higher minor version in case of CuDNN 7.0 or later version.
原创
发布博客 2019.01.11 ·
6544 阅读 ·
0 点赞 ·
2 评论 ·
1 收藏

tf.where 和 tf.cond对比

tf.where 和 tf.cond都是类似于if…else 的逻辑操作,现对比两者区别import tensorflow as tf pred=tf.placeholder(dtype=tf.bool,name='bool') x=tf.constant(1) y = tf.cond(pred,lambda:x+1,lambda:x-1) z=tf.where(pred,x+1,x-...
转载
发布博客 2019.01.17 ·
2418 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

ablation study解释

请看Quora上对于ablation study的解释高赞答案: An ablation study typically refers to removing some “feature” of the model or algorithm, and seeing how that affects performance.Examples:An LSTM has 4 gat...
转载
发布博客 2018.07.25 ·
14427 阅读 ·
18 点赞 ·
0 评论 ·
21 收藏

docker容器通信和端口暴露问题中的机制

一直以来用docker容器间通信都是使用的link的方式,这就限制各个容器启动的前后顺序,总感觉很不灵活,因此这次探索了一下直接通过docker自带网卡分配的局域网来进行容器间的访问。docker的端口暴露指的是,经过docker0这个网卡的转发,将容器本身的端口服务转发到暴露端口上,比如执行:docker run -dit -p 8080:12345 --name=con...
原创
发布博客 2018.07.22 ·
2776 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏