利用tf.ragged.boolean_mask完成选择mask压缩tensor
现有如下输入:1. [Batch_size, Seq_len, N_classes]的tensor T2. [Batch_size, Seq_len]的mask矩阵 M需求:根据M中的值来mask T,并去掉被mask掉的值实际场景:主要是现在有一个对话的每个时刻的状态,和角色(0/1),需要取出角色为1的所有utterances的状态,在此基础上选取最后一个角色为1的utterance的状态问题点:若使用tf.boolean_mask,则会得到[?, N_classes], ?代表


