10分钟读懂人工智能、机器学习到底有什么关系

转载 2017年11月11日 00:00:00

0?wx_fmt=gif&wxfrom=5&wx_lazy=1

文末彩蛋,错过哭一年。。。。


人工智能的浪潮正在席卷全球,诸多词汇时刻萦绕在我们耳边:人工智能(Artificial Intelligence)、机器学习(Machine Learning)。不少人对这些高频词汇的含义及其背后的关系总是似懂非懂、一知半解。

为了帮助大家更好地理解人工智能,这篇文章用最简单的语言解释了这些词汇的含义,理清它们之间的关系,希望对刚入门的同行有所帮助。

人工智能:从概念提出到走向繁荣


1956年,几个计算机科学家相聚在达特茅斯会议,提出了“人工智能”的概念,梦想着用当时刚刚出现的计算机来构造复杂的、拥有与人类智慧同样本质特性的机器。其后,人工智能就一直萦绕于人们的脑海之中,并在科研实验室中慢慢孵化。之后的几十年,人工智能一直在两极反转,或被称作人类文明耀眼未来的预言,或被当成技术疯子的狂想扔到垃圾堆里。直到2012年之前,这两种声音还在同时存在。


2012年以后,得益于数据量的上涨、运算力的提升和机器学习新算法的出现,人工智能开始大爆发。据领英近日发布的《全球AI领域人才报告》显示,截至2017年一季度,基于领英平台的全球AI(人工智能)领域技术人才数量超过190万,仅国内人工智能人才缺口达到500多万。

人工智能的研究领域也在不断扩大,图一展示了人工智能研究的各个分支,包括专家系统、机器学习、进化计算、模糊逻辑、计算机视觉、自然语言处理、推荐系统等。

640?wx_fmt=png

图一 人工智能研究分支

但目前的科研工作都集中在弱人工智能这部分,并很有希望在近期取得重大突破,电影里的人工智能多半都是在描绘强人工智能,而这部分在目前的现实世界里难以真正实现(通常将人工智能分为弱人工智能和强人工智能,前者让机器具备观察和感知的能力,可以做到一定程度的理解和推理,而强人工智能让机器获得自适应能力,解决一些之前没有遇到过的问题)。

弱人工智能有希望取得突破,是如何实现的,“智能”又从何而来呢?这主要归功于一种实现人工智能的方法——机器学习。

机器学习:一种实现人工智能的方法


机器学习最基本的做法,是使用算法来解析数据、从中学习,然后对真实世界中的事件做出决策和预测。与传统的为解决特定任务、硬编码的软件程序不同,机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。


举个简单的例子,当我们浏览网上商城时,经常会出现商品推荐的信息。这是商城根据你往期的购物记录和冗长的收藏清单,识别出这其中哪些是你真正感兴趣,并且愿意购买的产品。这样的决策模型,可以帮助商城为客户提供建议并鼓励产品消费。

机器学习直接来源于早期的人工智能领域,传统的算法包括决策树、聚类、贝叶斯分类、支持向量机、EM、Adaboost等等。从学习方法上来分,机器学习算法可以分为监督学习(如分类问题)、无监督学习(如聚类问题)、半监督学习、集成学习、深度学习和强化学习。

机器学习作为AI的核心技术之一,已广泛应用于数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、语音和手写识别、战略游戏和机器人等领域。


今年9月份,国内领先的人工智能教育平台「七月在线」推出「机器学习集训营 第二期」,100个名额一抢而空。优化后的第三期集训营,沿用前两期线上线下(北京、上海两个线下实战基地)相结合的授课方式,加强项目实训的同时引入线下BAT专家面对面、手把手教学方式;突出BAT级工业项目实战辅导 + 一对一面试求职辅导,提供3个月GPU云实验平台免费使用,精讲面试考点。让每一位学员不用再为遇到问题没人解答,缺乏实战经验以及简历上没有项目经验,面试屡屡遭拒而发愁。


本期限100个名额,历时3个月,10多个BAT级工业项目,保障每一位学员所学更多、效率更高、收获更大。

培养目标


从零开始,培养中高级机器学习工程师。挑战高薪、玩转AI。

特色服务


· 全面涵盖机器学习重要知识点

集训营内容分为八大部分,涵盖教你零基础快速上手编程、数据爬取、数据分析、数据可视化、玩转大数据、机器学习从原理到实战、深度学习从原理到实战、BAT工业级大项目实战。


· 提供GPU云实验平台

还原BAT真实生产环境,提供工业数据和国内首创的价值数十万的GPU云实验平台(提前装tensorflow、caffe、mxnet等主流DL框架和相关数据)。提供完善的实验平台供您动手、真枪实战,拒绝纸上谈兵。


· 线上线下项目实训

通过在线课程从头到尾掌握机器学习工业项目的各项流程、模型、算法,通过在线实训巩固强化实战所学,通过线下项目辅导练就ML工业项目的全栈能力。


· BAT专家级讲师 + 助教全方位辅导

我们拥有来自BAT的专家级讲师和数位助教,给你全程1v1般的定制辅导。通过GPU + jupyter notebook + GitHub在线提交作业,然后讲师和助教在线批改、讲解作业,且提供可执行的交互式代码,从而每次课都是标准化配置,涵盖:GPU、原理、案例、数据、代码、作业。有问题,课上直播课后答疑,手把手教会为止。


· 简历优化

根据集训营实战项目,将涉及到的关键知识点和项目经历优化到您的简历中。


· 面试求职辅导 + 就业推荐

精讲机器学习工程师面试时常见考点/模型/算法,且BAT一线技术经理一对一模拟真实面试,从技术、表达等方面全方位提升您的面试能力。根据您的技术特长提供定制化的能力评估、就业指导以及包括BAT等一线互联网公司的工作机会推荐。3个月挑战年薪30~50万。

课程安排


·第一阶段:零基础快速上手编程

在线课程:1-基本python类型、判断与循环流程等

在线实训:2-python基本练习题

在线课程:3-文件/数据读写、面向对象、第三方库等

在线实训:4-多种数据读写与面向对象练习

线下实训:5-python基本练习题与 google python实战题


·第二阶段:数据爬取得心应手

在线课程:1-requestsbs4解析静态网页和selenium解析动态网页

在线实训:2-电商网站17huo和天气预报数据抓取、模拟百度关键字搜索

在线课程:3-模拟登陆与scrapy爬虫框架使用

在线实训:4-豆瓣电影数据抓取、创业邦投资机构数据抓取

线下实训:5-新闻网站与链家网数据爬取(基于scrapy实现)


·第三阶段:数据分析全攻略

在线课程:1-pandas花式数据统计与分析技能

在线实训:2-pandas综合练习

在线课程:3-用pandas完成机器学习数据预处理与特征工程

在线实训:4-pandas完成Kaggle机器学习预处理

线下实训:5-美国大选、共享单车数据分析


·第四阶段:可视化提升数据逼格技能get

在线课程:1-好用的python可视化利器matplotlib

在线实训:2-matplotlib完成Titanic和自行车租赁数据可视化

在线课程:3-自带各种数据拟合分析的可视化利器seaborn

在线实训:4-seaborn完成Titanic和自行车租赁数据可视化

线下实训:5-美国大选、共享单车可视化技能巩固与实战


·第五阶段:玩转大数据

在线课程:1-hadoop与map-reduce

在线实训:2-手写map-reduce完成词频统计,制作词云

在线课程:3-Spark与大数据处理

在线实训:4-Spark大数据日志分析

线下实训:5-大数据分析处理案例


·第六阶段:机器学习原理到实战

在线课程:1-机器学习流程、预处理、特征工程

在线实训:2-Kaggle机器学习比赛中的特征工程处理实战

在线课程:3-模型评判标准与部分机器学习有监督算法

在线实训:4-sklean接口熟悉与机器学习建模指导

线下实训:5-sklearn建模与使用

在线课程:6-机器学习有监督算法与无监督学习

在线实训:7-sklearn刷Kaggle比赛题

在线课程:8-机器学习集成算法与大杀器Xgboost/LightGBM

在线实训:9-Xgboost与LightGBM使用

在线课程:10-数据科学比赛精讲

在线实训:11-数据科学比赛练习赛

线下实训:12-集成算法与场景建模


·第七阶段:深度学习原理到实战

在线课程:1-深度神经网络、google wide&&deep模型、腾讯通用CTR神经网络框架与实现

在线课程:2-卷积神经网络、caffe实战图像分类、Tensorflow实战图像风格变换实现

在线课程:3-循环神经网络、Tensorflow实战情感分析与文本生成实现

线下实训:4-Caffe&&Tensorflow实战


·第八阶段:实际综合项目与就业指导

线下实训:1-自然语言处理项目

(文本数据抓取+spark/pandas数据分析+可视化+特征抽取+Sklearn/Spark机器学习建模+深度学习建模)

线下实训2-分类与推荐系统实战

(音乐数据抓取+spark/pandas分析+可视化+协同过滤+隐语义模型+特征抽取分类建模)

线下实训3-图像项目

(图像分类+图像检索)

线下实训4-机器学习面试辅导

(面试注意点+常见面试考点精讲+简历指导+项目展示)


实战项目


· 新闻网站与链家网数据爬取

0?wx_fmt=png

通过对新闻网站和链家网进行数据爬取,巩固静态网站爬取技巧,掌握技能包括requests库的使用、网页解析、正则表达式应用,中文文本处理等。


· 豆瓣与链家详情数据爬取

0?wx_fmt=png

通过对豆瓣链家微信公众号等进行数据爬取,掌握登录网站数据获取的知识,掌握技能包括模拟登陆,数据爬取与解析,多类数据爬取。


· 大数据分析处理案例

0?wx_fmt=png

通过对大文件日志的分析,熟悉hadoop,spark写map-reduce处理海量数据的方法,并对电商数据进行处理,get工业界常用大数据技能。


更多实战项目,请点击阅读原文。

讲师介绍


0?wx_fmt=png

寒小阳

著名电商搜索广告负责人,多年实际ml/DL/dm项目经验,专注海量数据上机器学习算法的应用与优化。做过推荐系统、NLP、点击率预估、图像识别。讲课清晰易懂,擅长用实际数据、代码、案例说话,备受数千名学员好评。


0?wx_fmt=png

林老师

原BAT高级技术专家,更早时期先后任职于微软、EMC等,从事过操作系统、数据库和云存储相关产品的研发。擅长Python数据分析、爬虫。曾多次作为面试官参与BAT/EMC校招面试与出题,善于剖析leetcode经典题型、助人入门、提高。


0?wx_fmt=png

David

人大统计系数据挖掘与统计应用硕士,从事数据分析挖掘多年,开发过某金融公司量化自动交易系统。现为七月在线Python教学负责人,喜爱以数据去理解事物,擅长从零起步,一步步将复杂问题简单通俗阐述,备受广大学员欢迎。


时间安排



2018年1月8日起正式上课,为期近3个月

在线课程 周一20:00PM--22:00PM

在线实训 周二20:00PM--22:00PM

在线课程 周三20:00PM--22:00PM

在线实训 周四20:00PM--22:00PM

线下实战 周日09:00AM--13:00PM

福利大放送


这个双十一,来七月在线活动会场,福利人人有份:免费送课,免费送【AI工程师成长之路】合集,Mac、爱疯等你抽!

收藏链接:http://www.julyedu.com/sale/pre_1111

11.10-11.12抢课、抽Mac


0?wx_fmt=jpeg


扫码领【AI工程师成长之路】合集

0?wx_fmt=jpeg


戳原文,抽奖,享福利

深度学习简介,GPU计算的原理,分布式机器学习原理

深度学习简介深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。深度学习采用的模型...
  • horsefoot
  • horsefoot
  • 2017年05月04日 20:48
  • 14252

机器学习数学原理(1)——极大似然估计法

机器学习数学原理(1)——极大似然估计法事实上机器学习的大部分算法都是以数理统计和概率论为理论基础构建的。笔者在学习机器学习的过程中,意识到其实机器学习中的很多假设背后都是有着数学原理支撑的,从而使得...
  • z_x_1996
  • z_x_1996
  • 2017年04月14日 23:21
  • 2758

机器学习系列------1. GBDT算法的原理

GBDT算法是一种监督学习算法。监督学习算法需要解决如下两个问题: 损失函数尽可能的小,这样使得目标函数能够尽可能的符合样本 正则化函数对训练结果进行惩罚,避免过拟合,这样在预测的时候才能够准确。...
  • u012684933
  • u012684933
  • 2016年04月12日 18:16
  • 15823

机器学习数学原理(5)——广泛拉格朗日乘子法

这一篇主要讲解了不等式约束下的凸优化问题,即广泛拉格朗日乘子法,为机器学习中的最优间隔分类器和SVM支持向量机算法做铺垫。...
  • z_x_1996
  • z_x_1996
  • 2017年05月12日 09:55
  • 3217

机器学习算法原理与编程实践电子书以及代码

  • 2016年06月21日 21:28
  • 92.21MB
  • 下载

机器学习算法原理与编程实践 全文

  • 2017年01月31日 15:14
  • 24.25MB
  • 下载

Learning theory 机器学习原理

Introduction 年前刚刚完成了一门台大的机器学习基石课程,最后得到了complete with distinction的证书,话说真是有点小惊喜啊,为什么惊喜呢?因为第二次作业做得实在是烂...
  • u012175010
  • u012175010
  • 2014年02月24日 19:13
  • 3489

机器学习——随机森林算法及原理

随机森林顾名思义,是用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一棵决策树之间是没有关联的。在得到森林之后,当有一个新的输入样本进入的时候,就让森林中的每一棵决策树分别进行一下判...
  • NIeson2012
  • NIeson2012
  • 2016年04月29日 09:30
  • 38393

一篇文章搞懂人工智能、机器学习和深度学习之间的区别

概述2015年11月9日,Google发布人工智能系统TensorFlow并宣布开源。这两年在不管在国内还是在国外,人工智能、机器学习仿佛一夜之前传遍大街小巷。机器学习作为人工智能的一种类型,可以让软...
  • xiangzhihong8
  • xiangzhihong8
  • 2017年04月09日 21:37
  • 13345

人工智能、机器学习和数据挖掘三者之间的关系

人工智能:         人工智能(ArtificialIntelligence),英文缩写为AI。它是关于知识的科学(知识的表示、知识的获取以及知识的应用)。         人工智能(学科)...
  • jdbc
  • jdbc
  • 2015年03月24日 23:10
  • 11628
收藏助手
不良信息举报
您举报文章:10分钟读懂人工智能、机器学习到底有什么关系
举报原因:
原因补充:

(最多只允许输入30个字)