动态规划算法——背包问题(Dynamic Programming Algorithm - Knapsack Problem)

本文介绍了背包问题的动态规划算法解决方案。通过示例解释了如何利用动态规划找到最优化的选择,以达到在不超过背包容量的情况下,选取价值最大的物品组合。并给出了算法的时间复杂度及伪代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

动态规划算法——背包问题(Dynamic Programming Algorithm - Knapsack Problem)


背包问题(Knapsack Problem)
这里写图片描述
(picture is from https://en.wikipedia.org/wiki/Knapsack_problem)
The knapsack problem is a problem in combinatorial optimisation: given n items, each with a weight and a value. Find the most valuable selection of items that will fit in the knapsack.

As shown in the picture,
knapsack capacity: 15 kg
weights: 1, 12, 2, 1, 4 kg
values: 2, 4, 2, 1, 10 dollars

If we choose the yellow, grey, blue and orange items, it will create the value of 2+2+1+10=15 dollars and has a weight of 8kg less than knapsack capacity. This is the most valuable selection.

How can we find the most valuable selection?

方法一 暴力破解(Brute force)
这里写图片描述
Here is an example. We find all combinations of items and then compute its sum of weights and values.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值