分治法——主定理(Divide and Conquer - The Master Theorem)

本文探讨了分治法中的主定理,它用于分析递归问题的时间复杂度。主定理适用于a=b的情况,如快速排序和归并排序等算法,通过解决规模为n/b的子问题来解决问题。根据不同的情况,主定理可以得出时间复杂度为O(nlogn),O(n)和O(n^2)。最后,强调了分治法在算法设计中的重要性,如在归并排序和快速排序中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分治法——主定理(Divide and Conquer - The Master Theorem)


Divide-and-Conquer Recurrences
What is the time required to solve a problem of size n by divide-and-conquer?

Generally, we split the problem into b small problems. The size of each small problem is n/b. There are a small problems needed to be solved(In general, a=b). So, we can express the recurrence as

                T(n) = aT(n/b) + f(n).

f(n) represents the time spent on dividing a problem into b sub-problems and combining the a results.

For example, T(n) = 2T(n/2) + n.

The Mater Theorem
For integer constants a ≥ 1 and b > 1, and the function f with f(n) ∈ Θ(n^d ), d ≥ 0, the recurrence

                T(n) = aT(n/b) + f(n)

(with T(1) = c) has solutions, and

### K-Means聚类算法中的分治法实现与优化 #### 分治策略概述 分治法是一种通过将一个问题分解成若干个小规模子问题来求解的技术。对于K-Means聚类算法而言,可以采用分治策略减少计算量并提高效率。 #### 数据分割 数据集可以根据空间分布特性被划分为多个互不相交的小区域[^1]。这种划分可以通过预先设定边界框或其他几何形状完成。每个子区域内独立运行标准的K-Means过程: ```python import numpy as np from sklearn.cluster import MiniBatchKMeans def divide_data(X, num_partitions=4): """ 将输入的数据X按照指定数量分区 """ n_samples = X.shape[0] indices = np.random.permutation(n_samples) partition_size = int(np.ceil(n_samples / num_partitions)) partitions = [] for i in range(num_partitions): start_idx = i * partition_size end_idx = min((i + 1) * partition_size, n_samples) partitions.append(X[indices[start_idx:end_idx]]) return partitions partitions = divide_data(data_matrix, num_partitions=8) local_clusters = {} for idx, part in enumerate(partitions): mbkmeans = MiniBatchKMeans(n_clusters=k).fit(part) local_clusters[idx] = (mbkmeans.cluster_centers_, mbkmeans.labels_) ``` #### 局部中心点聚合 各个子区间的局部质心会被收集起来作为全局范围内的初始簇中心候选集合。接着利用这些新的种子再次执行完整的K-Means迭代直到收敛: ```python global_centroids = np.vstack([centers for centers,_ in local_clusters.values()]) final_kmeans = MiniBatchKMeans(n_clusters=k).fit(global_centroids) final_labels = final_kmeans.predict(data_matrix) ``` 这种方法不仅能够加速训练速度而且有助于克服大规模数据集中存在的内存瓶颈问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值