技术学习里程 | 数字图像处理

Chapter 1

地球数字化,一方面要求处理对象的数字化,一方面要求处理时的直观性。
数字的可视化与成像后的图像处理是保障直观性的基础。

图像是对客观存在的物体的一种相似性的生动模仿或描述。是物体的一种不完全、不精确,但在某种意义上是适当的表示。
物理图像:物质或能量的实际分布。
虚拟图像:采用数学的方法,将由概念形成的物体进行表示的图像。

计算机图形学:用计算机将由概念所表示的物体图像进行处理和显示。侧重于根据给定的物体描述模型、光照及想象中的摄像机的成像几何,生成一幅图像。

数字图像:用数字阵列表示的图像。

像素:图像中能被单独处理的最小基本单元。

因为矩阵是二维的,所以可以用矩阵来描述数字图像。描述数字图像的矩阵目前采用的是整数阵,即每个像素的亮暗,用一个整数来表示。

图像的坐标系:矩阵是按照行列的顺序来定位数据的,但是图像是在平面上定位数据的,所以有一个坐标系定义上的特殊性。

图像处理的发展历史:

上世纪20年代,纽约——伦敦海底电缆传输数字化的新闻图片。传递时间从一个多星期减少到3个小时。

50年代中期在太空计划的推动下开始数字图像的研究。

60年代末,数字图像处理形成比较完整的理论与技术体系。

70年代,CT的发明,血球自动分类仪的商业化。

之后迅猛发展。

70年代以来数字图像处理发展迅猛的原因:

1:主观需求:人类从外界获取的信息60~80%通过眼睛的图像信息。
2:计算机技术的发展和通信手段的发展提供客观可能。
3:数学化的特点是该学科成熟的一个标志。
总之:是一门在理论研究和应用开发两方面获得极大统一的学科。
 

数字图像处理发展趋势:

1:结合网络和Internet技术需求而发展起来的新技术,比如网上图象、视频的传输、点播和新的浏览、查询手段。
2:高级图象处理技术,结合最新的数学进展,诸如小波、分形、形态学等技术。
3:智能化,图象自动分析、识别与理解。

黑白图像是指图像的每个像素只能是黑或者白,没有中间的过渡,故又称为二值图像。二值图像的像素值为0、1。

灰度图像是指每个像素的信息由一个量化的灰度级来描述的图像,没有彩色信息。

彩色图像是指每个像素的信息由RGB三原色构成的图像,其中RGB是由不同的灰度级来描述的。

色调:描述颜色的不同,取决于颜色的波长。
色饱和度:描述颜色的深浅,取决于颜色中混合白光的比例多少。
亮度:描述色光的明暗变化的强度;取决于色光的能量。
色调和色饱和度统称为色度。

RGB模型也称为加色法混色模型。它是以RGB三色光互相叠加来实现混色的方法,因而适合于显示器等发光体的显示。其配色方程描述:F(物体颜色)=R(红色的百分比)+G(绿色的百分比)+B(蓝色的百分比)

图像数字化:将模拟图像经过离散化之后,得到用数字表示的图像。

采样:将在空间上连续的图像转换成离散的采样点(即像素)集的操作。

采样间隔太小,则增大数据量;太大, 则会发生信息的混叠,导致细节无法辨认。

量化:将各像素所含的明暗信息离散化后,用数字来表示。

充分考虑到人眼的识别能力之后,目前非特殊用途的图像均为8bit量化,即采用0 ~ 255的整数来描述“从黑到白”。在3bit以下的量化,会出现伪轮廓现象。
 

图像压缩(编码):简化图像的表示,压缩图像的数据,以便于存储和运输。

图像增强(主观):将图像中的有用信息增强,同时将无用信息进行抑制,提高图像的可观察性。

图像恢复:将退化了的或者模糊了的图像的原有信息进行恢复,从而达到清晰化的目的。

图像重建:根据二维平面图像数据构造出三维物体的图像。

图像识别与理解:通过对图像中各种不同的物体特征进行定量化描述之后,将所期望获得的目标物进行提取,并且对所提出的目标物进行一定的定量分析。

图像的几何变换:改变一幅图像的大小或形状。

图像隐藏:将一幅图像或者某些可数字化的媒体信息隐藏在一幅图像中。

图像变换:通过数学映射的方法,将空域中的图像信息转换到如频域、时频域等空间上进行分析的数学手段。

Chapter 2 

连续图像/模拟图像:在二维坐标系中具有连续变化的,即图像画面的像素点位置的变化是连续的,同时其每个点上的灰度值的变化也是连续的图像。
离散图像/数字图像:用一个数字阵列表示的图像。数字图像是图像的数字表示,像素是其最小的单位。


一幅行数为M、列数为N的图像大小为M×N的矩阵形式为: 


其中矩阵中的每个元素代表一个像素,表达式的右侧定义了一幅数字图像。 

假定图像尺寸为M、N,每个像素所具有的离散灰度级数为G,将G取为2的整数幂k,即G=2^k

则存储这幅图像所需的位数是:

如果图像是正方形,即M=N,则:

当一幅图像有2的k次方个灰度级时,实际上通常称该图像为k比特图像。

设位于坐标(x,y)的一个像素p有4个水平和垂直的相邻像素,其坐标由为:


这个像素集称为p的4邻域,用N4(p)表示。
p的4个对角像素有如下坐标:


并用ND(p)表示,与4个邻域点一起,这些点称为p的8邻域,用N8(p)表示。

图像分辨率: 采样所获得的图像总像素的多少。表示数字化图像的大小,以水平和垂直的像素数表示。单位:像素*像素。

采样密度:图像上单位长度所包含的采样点数。 

采样频率:一秒钟内采样的次数。反映了采样点之间间隔的大小。

扫描分辨率是扫描仪输入图像的细微程度,指每英寸扫描所得的点数。单位:像素/英寸,像素/厘米。

非均匀采样:

在灰度级变化尖锐的区域,用细腻的采样
在灰度级变化平滑的区域,用粗糙的采样
 

均匀量化是把采样值的灰度范围等间隔地分割并进行量化,也称为线性量化。
非均匀量化是对像素出现频度少的部分量化间隔取大,而对频度大的量化间隔取小。
在少的量化级数下,非均匀量化的效果比均匀量化好。
在允许量化级数比较多时,多采用均匀量化。
 

数字图像的位图存储文件——文件的总体结构:

灰度直方图是灰度级的函数,是对图像中灰度级分布的统计。有两种表示形式
1)图形表示形式
      横坐标表示灰度级,纵坐标表示图像中对应某灰度级所出现的像素个数。
2)数组表示形式
       数组的下标表示相应的灰度级,数组的元素表示该灰度级下的像素个数。
一幅图像应该利用全部或几乎全部可能的灰度级,否则等于增加了量化间隔。丢失的信息将不能恢复。

假设某图像的灰度直方图具有 二峰性,则表明这个图像较亮的区域和较暗的区域可以较好地分离。
取二峰间的谷点为阈值点,可以得到好的二值处理的效果。

对比度:通俗地讲,就是亮暗的对比程度。通常表现了图像画质的清晰程度。

直方图均衡化方法的基本思想是,当数据的分布接近均匀分布的时候,数据所承载的信息量最大。图像的灰度直方图反映了图像中像素的灰度分布特性,因此,通过对直方图的调整,可以达到使图像数据信息量增大的目的。
基本原理:对图像中像素个数比较多的灰度值进行展宽,而对像素个数少的灰度值进行归并,从而达到清晰图像的目的。

设f、g分别为原图像和处理后的图像。
求出原图f的灰度直方图,设为h。显然,在[0,255]范围内量化时,h是一个256维的向量。

1)求出图像f的总体像素个数
       Nf = m*n (m,n分别为图像的长和宽)
2)计算每个灰度级的分布概率,即每个像素在整个图像中所占的比例。
       hs(i)=h(i)/Nf  (i=0,1,…,255)

 

 

 

  

 图像增强的目的是为了改善画质,使图像的显示效果更加清晰。
 

空间域处理又分为两种:
1.局部运算:3×3跟所处理像素附近的像素有联系
2.点运算:1×1处理的只是某一像素的灰度

一幅输入图象经过点处理将产生一幅输出图象,点运算的每个象素点的灰度值仅由相应输入象素点的值决定;局部运算则每个输出象素点的灰度值由相应输入象素点的一个领域内几个象素的灰度决定。

线性变换:

图像反转:

输入图像灰度范围[0, L-1]
公式:s = L-1- r 
物理意义:倒转图像的强度产生图像反转的对等图像
适用范围:特别适用于增强嵌入暗色区域的白色或灰色细节,特别是黑色面积占主导地位
 

幂次变换:

物理意义:用于图像获取、打印和显示的各种装置根据幂次规律进行响应,习惯上,幂次等式中的指数是指伽马值,用于修正幂次响应过程为伽马校正。


 

对数变换:

 物理意义:使一窄带低灰度输入图像值映射为一宽带输出值,可以利用这种变换来扩展被压缩的高值图像中的暗像素
 

设原图、处理后的结果图的灰度值分别为[f(i,j)]和[g(i,j)];
要求[g(i,j)]和[f(i,j)]均在[0,255]间变化,但是g的表现效果要优于f。
因为f和g的取值范围相同,所以通过 抑制 不重要的部分,来 扩展 所关心部分的对比度。

 当256个灰度级所表示的亮暗范围内的信息量太大,没办法很好地表述时,通过开窗的方式,每次只把窗内的灰度级展宽,而把窗外的灰度级完全抑制掉。

 

灰级窗切片:将所需要检测的目标与画面其他的部分分离开,目标部分为白,而非目标部分为黑。

动态范围:是指图像中所记录的场景中从暗到亮的变化范围。
动态范围对人视觉的影响:由于人眼所可以分辨的灰度的变化范围是有限的,所以当动态范围太大时,很高的亮度值把暗区的信号都掩盖了。

通过把原图中“不太黑”的像素也变成黑,把原图中“不太白”的像素也变成白的方式,来压缩动态范围,使新的图像中,关心部分的对比度可以展宽。

 

提出非线性动态范围调整,是因为线性动态范围调整的分段线性影射不够光滑。
非线性动态范围调整,要求可以用光滑的曲线来实现。
考虑到人眼对视觉信号的处理过程中,有一个近似对数算子的环节,因此,可采用对数运算来实现非线性动态范围调整。 

同态滤波的基本原理是:将像元灰度值看作是照度和反射率两个组份的产物。由于照度相对变化很小,可以看作是图像的低频成份,而反射率则是高频成份。通过分别处理照度和反射率对像元灰度值的影响,利用压缩亮度范围和增强对比度来改善图像的质量,达到揭示阴影区细节特征的目的。 

 同态滤波处理的流程如下: 
S(x,y)---->Log--->FFT---->高通滤波--->IFFT---->Exp---->T(x,y) 
其中S(x,y)表示原始图像;T( x,y)表示处理后的图像;Log 代表对数运算;FFT 代表傅立叶变换;IFFT 代表傅立叶逆变换;Exp 代表指数运算。

把人眼无法区别的灰度变化,施以不同的彩色来提高识别率,这便是伪彩色增强的基本依据。

伪彩色增强方法大致可以分为以下三类:
1.基于灰度变换的伪彩色方法:将亮度低的影射为蓝色,亮度高的影射为红色。
2.基于灰度调色板的伪彩色方法:按照位图文件的索引色模式,首先根据需要设计一个调色板。然后,将灰度值作为调色板的索引值,完成从灰度到彩色的影射。
3.基于区域分割的伪彩色方法:这是一种对不同的区域进行不同颜色增强的方法,可同时增强并清晰地观察不同区域的细节。
 

Chapter 4

图像的几何变换包括了图像的形状变换和图像的位置变换。图像的几何变换不改变像素的值,只改变像素的位置。
图像的形状变换是指图像的放大、缩小与错切,通常在目标物识别中使用。
图像的位置变换是指图像的平移、镜像与旋转。

图像缩小:
分为按比例缩小和不按比例缩小两种。
图像缩小之后,因为承载的信息量小了,所以画布可相应缩小。
图像缩小实际上就是对原有的多个数据进行挑选或处理,获得期望缩小尺寸的数据,并且尽量保持原有的特征不丢失。
最简单的方法就是等间隔地选取数据。 

图像放大:

最简单的思想是,如果需要将原图像放大为k倍,则将原图像中的每个像素值,填在新图像中对应的k*k大小的子块中。

图像的错切:
平面景物在投影平面上的非垂直投影效果。

错切之后原图像的像素排列方向发生改变。该坐标变化的特点是,x方向与y方向独立变化。

图像的位置变换主要是用于目标识别中的目标配准。

注意:平移后的景物与原图像相同,但“画布”一定是扩大了。否则就会丢失信息。
 

 

图像旋转之前,为了避免信息的丢失,画布的扩大是最重要的。
画布扩大的原则是:以最小的面积承载全部的画面信息。

图像旋转之后,出现了两个问题:
1)像素的排列不是完全按照原有的相邻关系。
2)会出现许多的空洞点。
相邻像素的角度是无法改变的,所以只能通过增加分辨率的方法来从整体上解决这个问题。
采用某种填补方法来填充空洞。

图像仿射变换提出的意义是采用通用的数学影射变换公式,来表示前面给出的几何变换。

Chapter 5

所谓的图像噪声,是图像在摄取时或是传输时所受到的随机干扰信号。
椒盐噪声:出现位置是随机的,但噪声的幅值是基本相同的。
高斯噪声:出现在位置是一定的(每一点上),但噪声的幅值是随机的。 

均值滤波器:在图像上,对待处理的像素给定一个模板,该模板包括了其周围的邻近像素。将模板中的全体像素的均值来替代原来的像素值的方法。均值滤波器的缺点是,会使图像变的模糊,原因是它对所有的点都是同等对待,在将噪声点分摊的同时,将景物的边界点也分摊了。

中值滤波器:因为噪声(如椒盐噪声)的出现,使该点像素比周围的像素亮(暗)许多。如果在某个模板中,对像素进行由小到大排列的重新排列,那么最亮的或者是最暗的点一定被排在两侧。取模板中排在中间位置上的像素的灰度值替代待处理像素的值,就可以达到滤除噪声的目的。

对于椒盐噪声,中值滤波效果比均值滤波效果好。  
原因:
椒盐噪声是幅值近似相等但随机分布在不同位置上,图像中有干净点也有污染点。
中值滤波是选择适当的点来替代污染点的值,所以处理效果好。
因为噪声的均值不为0,所以均值滤波不能很好地去除噪声点。
 

对于高斯噪声,均值滤波效果比均值滤波效果好。   
原因:
高斯噪声是幅值近似正态分布,但分布在每点像素上。
因为图像中的每点都是污染点,所以中值滤波选不到合适的干净点。
因为正态分布的均值为0,所以均值滤波可以减弱噪声。

边界点与噪声点有一个共同的特点是,都具有灰度的跃变特性。所以平滑处理会同时将边界也处理了。      

K近邻(KNN)平滑滤波器实现算法:
1)   以待处理像素为中心,作一个m*m的作用模板。
2)在模板中,选择K个与待处理像素的灰度差为最小的像素。
3)将这K个像素的灰度均值替换掉原来的像素值。
 

KNN滤波器因为有了边界保持的作用,所以在去除椒盐以及高斯噪声时,对图像景物的清晰度保持方面的效果非常明显。
当然,所付出的代价是:算法的复杂度增加了。

Chapter 6

图像锐化的目的是加强图像中景物的细节边缘和轮廓。
锐化的作用是使灰度反差增强。
因为边缘和轮廓都位于灰度突变的地方。所以锐化算法的实现是基于微分作用。

单方向的一阶锐化是指对某个特定方向上的边缘信息进行增强。
因为图像为水平、垂直两个方向组成,所以,所谓的单方向锐化实际上是包括水平方向与垂直方向上的锐化。 

 

 

 

单方向锐化后的处理(负值变正值):

方法1:整体加一个正整数,以保证所有的像素值均为正。这样做的结果是:可以获得类似浮雕的效果。
方法2:将所有的像素值取绝对值。这样做的结果是,可以获得对边缘的有方向提取。
以上锐化处理结果对于人工设计制造的具有矩形特征物体(例如:楼房、汉字等)的边缘的提取很有效。但是,对于不规则形状(如:人物)的边缘提取,则存在信息的缺损。
 

无方向一阶锐化:

 


二阶微分锐化:

1)对于突变形的细节,通过一阶微分的极大值点,二阶微分的过0点均可以检测出来。 
2)对于细线形的细节,通过一阶微分的过0点,二阶微分的极小值点均可以检测出来。 
3)对于渐变的细节,一般情况下很难检测,但二阶微分的信息比一阶微分的信息略多。 

在前面的算法公式中注意以下几点:
1)为了防止对0取对数,计算时实际上是用log(f(i,j)+1);
2)因为对数值很小log(256)=5.45,所以计算时用46*log(f(i,j)+1)。(46=255/log(256))

Wallis算法考虑了人眼视觉特性,因此,与Laplacian等其他算法相比,可以对暗区的细节进行比较好的锐化。 
Sobel算子获得的边界是比较粗略的边界,反映的边界信息较少,但是所反映的边界比较清晰;
Laplacian算子获得的边界是比较细致的边界。反映的边界信息包括了许多的细节信息,但是所反映的边界不是太清晰。
 

Chapter 7

图像分割是指通过某种方法,使得画面场景被分为“目标物”及“非目标物”两类,即将图像的像素变换为黑、白两种。
因为结果图像为二值图像,所以通常又称图像分割为图像的二值化处理。

图像分割方法: 

1.P-参数法:

对固定分辨率下的目标物,根据目标物在画面中所占的比例来选择阈值,进行二值化处理。

1)设图像的大小为m*n,计算得到原图的灰度直方图h;
2)输入目标物所占画面的比例p;
3)尝试性地给定一个阈值Th=Th0;
4)计算在Th下判定的目标物的像素点数N;  


5)判断ps=N/(m*n)是否接近p?
      是,则输出结果;
      否则,Th=Th+dT; 
                (if ps<p, 则dT>0;else dT<0), 
               转4),直到满足条件。

2.均衡性度量法:

其基本设计思想是:属于“同一类别”的对象具有较大的一致性。
实现的手段是:以均值与方差作为度量均匀性的数字指标。

3.聚类方法:

以类内保持最大相似性以及类间保持最大距离为最佳阈值的求取目标。

Chapter 8

 经过图像分割之后,获得了目标物与非目标物两种不同的对象。但是提取出的目标物存在以下的问题:
1)提取的目标中存在伪目标物;
2)多个目标物中,存在粘连或者是断裂;
3)多个目标物存在形态的不同。      
 

腐蚀 是一种消除连通域的边界点,使边界向内收缩的处理。

膨胀是将与目标区域的背景点合并到该目标物中,使目标物边界向外部扩张的处理。

开运算是对原图先进行腐蚀处理,后再进行膨胀的处理。开运算可以在分离粘连目标物的同时,基本保持原目标物的大小。
闭运算是对原图先进行膨胀处理,后再进行腐蚀的处理。闭运算可以在合并断裂目标物的同时,基本保持原目标物的大小。

如果当按照常规的开运算不能分离粘连,或者是闭运算不能合并断裂:
对于开运算可以先进行N次腐蚀,再进行N次膨胀;
对于闭运算可以先进行N次膨胀,再进行N次腐蚀。
 

Chapter 9

可视光区的波长在400nm ~ 700nm,当光谱采样限制到三个人类视觉系统敏感的红、绿、蓝光波段时,对这三个光谱带的光能量进行采样,就可以得到一幅彩色图像。     

XYZ三刺激值是利用这些标准观察者配色函数计算得来的。 

Lab颜色空间是在1976年制定的等色空间,以克服在x,y色度图上相等的距离并不相当于我们所觉察到的相等色差的问题。
CIE规定了以700nm(红)、546.1nm (绿)、435.8nm (蓝)三个色光为三基色。又称为物理三基色。

RGB色系虽然是目前各类显示器使用的色系,但颜色的构成与人对颜色的理解方式不同,所以在进行处理与调整时,比较不容易获得准确的参数。

HSI反映了人类观察彩色的方式。I 表示光照强度或称为亮度,它确定了像素的整体亮度,而不管其颜色是什么。

S:表示饱和度,饱和度参数是色环的原点到彩色点的半径长度。
在环的外围圆周是纯的或称饱和的颜色,其饱和度值为1。在中心是中性(灰)色,即饱和度为0。


CMYK色系用于印刷行业,是一种减色系统,将从白光中滤出三种原色之后获得的颜色作为其表色系的三原色CMY。
K为黑色,为了印刷时对黑色可用黑色墨来印刷。
 C:青色,从白色中滤去红色。
 M:品红,从白色中滤去绿色。
 Y:  黄色,从白色中滤去蓝色。

既然是减色系统,其着色原理是基于光吸收的,这有别于RGB的光射入的方式。
C与M叠加:同时吸收了R与G,则为蓝色;
C与Y叠加:同时吸收了R与B,则为绿色;
M与Y叠加:同时吸收了G与B,则为红色。

YUV表色系统中
         Y:亮度;U,V:色差信号
目的是为了可以使电视节目可用同时被黑白电视及彩色电视接收。

电视信号在发射时,转换成YUV形式;接收时再还原成RGB三基色信号,由显像管显示。

与YUV表色系统不同的是它充分考虑了色彩组成时RGB三色的重要因素。
YUV考虑的是色系转换的简单;YCbCr考虑的是压缩时可以充分取出冗余量。
 

由于常用的彩色图像设备具有较宽而且相互覆盖的光谱敏感区,加上待拍摄图像的染色是变化的,所以很难在三个分量图中将物体分离出来。这种现象称为颜色扩散。

所以补偿的算法思路是:将原本应该是纯红、纯绿、纯蓝色的像素点转换成理想的颜色,由此获得原图与补偿图之间的影射关系,最后用此影射关系处理所有的像素点。

可以通过不同的颜色通道提取不同的目标物。 

当一幅彩色图像数字化后,在显示时颜色经常看起来有些不正常。这是因为色通道的不同敏感度、增光因子、偏移量等原因导致。称之为三基色不平衡。将其校正的过程就是彩色平衡。
 

在画面中,寻找不同亮暗的中性色的像素点,这些点应该是满足R=G=B的,但是因为色偏的缘故不相等,于是通过将其影射为相等值获得彩色平衡的作用矩阵,就可进行彩色平衡处理。

Chapter 10

图像变换的前提条件:
首先,提出的变换必须是有好处的,换句话说,可以解决时域中解决不了的问题。
其次,变换必须是可逆的,可以通过逆变换还原回原时域中。
 

 FFT的数据变换规律之一是:
1)可以不断分成奇数项与偶数项之加权和。
2)奇数项、偶数项可分层分类。
 

FFT的算法原理:
首先,将原函数分为奇数项和偶数项,通过不断的一个奇数一个偶数的相加(减),最终得到需要的结果。
也就是说FFT是将复杂的运算变成两个数相加(减)的简单运算的重复。这恰好符合计算机计算所擅长的计算规律。


 

考虑到高频反映细节、低频反映景物概貌的特性。往往认为可将高频系数置为0,骗过人眼。


余弦变换主要用于图像的压缩,如目前的国际压缩标准的JPEG格式中就用到了DCT变换。
 

参与评论 您还未登录,请先 登录 后发表或查看评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页

打赏作者

ushiikawa

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值