019 Budget-Bounded Incentives for Federated Learning(激励机制)

方法:我们展示了基于影响力的方案如何既能保证激励预算与联邦学习模型的价值成比例有界,又能保证真实报告数据是参与者的主导策略。
目的: 通过激励参与者提供真实数据来对抗搭便车(free-ride)行为。
结论: 在合理的条件下,即使测试数据是由参与者提供的,这个结果也是成立的。
局限性:不考虑恶意行为
通过激励参与者提供真实数据来对抗搭便车(free-ride)行为。——>虽然存在奖励真实数据的博弈论方案,但他们没有考虑到数据与先前贡献的冗余,这创造了套利机会,参与者可以从冗余数据中获得回报,而联邦可能被迫付出比联邦模型价值所证明的更多的激励。——>我们展示了基于影响力的方案如何既能保证激励预算与联邦学习模型的价值成比例有界,又能保证真实报告数据是参与者的主导策略。——>在合理的条件下,即使测试数据是由参与者提供的,这个结果也是成立的。
激励因素应该影响参与者面临的两种行为选择:
①观察策略:做出必要的努力,获得真实的数据,计算出最可能的模型更新,而不是使用启发式策略,不费苦心地编造数据。
②报告策略:将数据如实报告给协调者,而不是扰乱或混淆数据。
影响被正式定义为贡献对联邦学习模型损失函数的影响:
①如果贡献是一个模型更新,通过应用更新来改善损失函数;
②如果贡献是数据,则将数据加入训练集后对损失函数改进。
将回答以下问题:
①我们表明,当协调者评估对真实测试数据的贡献时,参与者的主导策略是投入精力获取真实数据并准确地报告它,因此避免了搭便车的两个方面。
②我们证明了参与者会尽快提供他们的数据,这样就没有了参与者保留数据并希望在以后获得更高回报的风险。
③我们证明了当部分或全部测试数据由参与者提供时,真实行为是诱导博弈的贝叶斯-纳什均衡(Bayes-Nash equilibrium)。此外,如果已知测试数据的最小部分是真实的,如实报告是参与者的主要策略。

相关工作:
当输入数据点由战略来源提供时,学习模型的主题已经成为机器学习和博弈论交叉领域中越来越多的文献的焦点。
①参与者对估计过程本身的结果感兴趣的设置。
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值