Description
初始序列只有nn一个元素,每次操作会把序列中每个大于的元素xx变成,直至序列所有数字变成00或为止,问操作结束后序列第ll个元素到第个元素之间有多少11
Input
三个整数,保证rr不超过序列长度
Output
输出操作结束后序列第ll个元素到第个元素之间有多少11
Sample Input
7 2 5
Sample Output
4
Solution
对于一个元素,假设2n≤x<2n+12n≤x<2n+1,那么需要nn次操作才能把变成若干00和,简单计算得xx会变成一个长度为的0101序列,且其中共xx个(数学归纳法即可),进而可以递归解决该问题,假设当前在统计xx所形成的区间的贡献(答案即求nn所形成的整个区间的贡献),如果该区间被查询区间包含则贡献即为,如果该区间与查询区间不相交则贡献为00,否则把该区间按操作要求分成左中右三块,令为区间中点,则左半部分为由⌊x2⌋⌊x2⌋形成的区间[L,mid−1][L,mid−1]的贡献,右半部分为由⌊x2⌋⌊x2⌋形成的区间[mid+1,R][mid+1,R]的贡献,中间为x%2x%2对答案的贡献,递归求解即可
Code
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
ll deal(ll n)
{
ll t=log2(n);
return (1ll<<(t+1))-1;
}
ll Solve(ll n,ll L,ll R,ll l,ll r)
{
if(n==0)return 0;
if(l<=L&&R<=r)return n;
if(r<L||l>R)return 0;
ll mid=(L+R)/2;
return Solve(n/2,L,mid-1,l,r)+Solve(n%2,mid,mid,l,r)+Solve(n/2,mid+1,R,l,r);
}
int main()
{
ll n,l,r;
while(~scanf("%I64d%I64d%I64d",&n,&l,&r))
printf("%I64d\n",Solve(n,1,deal(n),l,r));
return 0;
}