NYOJ-102 次方求模 AC


地址:http://acm.nyist.net/JudgeOnline/problem.php?pid=102
//a^b mod c=(a mod c)^b mod c很容易设计出一个基于二分的递归算法。
#include<stdio.h>
#include<stdlib.h>
//快速幂算法,数论二分 
long long powermod(int a,int b, int c) //不用longlong就报错,题目中那个取值范围不就在2的31次方内
{
    long long t;
    if(b==0)  return 1%c;
    if(b==1)  return a%c;
    t=powermod(a,b/2,c);//递归调用,采用二分递归算法,,注意这里n/2会带来奇偶性问题
    t=t*t%c;//二分,乘上另一半再求模
    if(b&1)  t=t*a%c;//n是奇数,因为n/2还少乘了一次a
    return t;
}
int main()
{
    int n;
    long long a,b,c;
    scanf("%d",&n);
    while(n--)
    {
        scanf("%lld%lld%lld",&a,&b,&c);
        printf("%lld\n",powermod(a,b,c));
    }
    return 0;
}


借鉴大神的代码,同余定理,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值