弦图

(重发下这篇原发于 2013-03-07 的网易博客)

 

话说从前有个弦图……

弦是环上连接两个不相邻的点的边。

任意一个长度大于3的环上一定有一条弦。

弦图的诱导子图都是弦图。

 

从前有个单纯点……

一个结点v和与v相邻的结点形成的诱导子图为一个团,则v是单纯点。

弦图至少有一个单纯点,不是完全图的弦图至少有两个不相邻的单纯点。

 

从前有个完美消除序列……

每次删一个单纯点,丢到序列中,就是完美消除序列。

一个图是弦图等价于它有完美消除序列。

 

从前有个完美消除序列构造算法……

有个label数组

每次选label最大的丢到完美消除序列中,把与它相邻的结点v的label都+1

用桶来维护就是O(n + m)

 

从前有个完美消除序列判定算法……

从后往前扫,设当前考虑的结点v,相邻且在v之后的结点依次是u1, u2, u3, ... uk

u1是最靠前的那个。

判断u1是否和u2, u3, ... uk是否相邻就行了。

 

从前有个弦图的极大团……

设p(v)是v在完美消除序列中的位置。

N(v) = {u | u与v相邻 且 p(u) > p(v)}

则团一定是v union N(v)的形式。

 

从前有个弦图的极大团计数算法……

即对于每个v判断v union N(v)是否是极大团。

设next(v)是与v相邻的,在v之后的,最前面的结点。

next(w) = v 且 |N(v)| + 1 <= |N(w)|,则v不是极大团。

 

(重发下这篇原发于 2013-03-07 的网易博客)

 

从前有个弦图的最小染色算法……

对完美消除序列从后往前扫,贪心染色。

 

从前有个弦图的最大点独立集算法……

对完美消除序列从前往后扫,能选就选。

 

从前有个弦图的最小团覆盖算法……

就是最大点独立集带上它的N集合。

 

从前有个弦图什么都是相等的……

最大团 = 最小染色

最大点独立集 = 最小团覆盖

 

从前有个vfk……

他不会证大部分上面的结论,于是贴出来时常看看。

临表涕零,不知所云。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值