如何为对话添加消息历史记录

在构建聊天机器人时,传递对话状态至关重要。 RunnableWithMessageHistory 类允许我们为某些类型的链添加消息历史记录。它封装了另一个 Runnable,并为它管理聊天消息历史。具体来说,它在将消息传递给 Runnable 之前加载对话中的先前消息,并在调用 Runnable 后保存生成的响应作为消息。

技术背景介绍

在创建对话应用程序时,管理消息历史是维持会话连贯性的重要部分。通过管理和传递消息历史,模型可以在应对多轮对话时保持上下文。RunnableWithMessageHistory 提供了一种机制,使用户能够在调用时通过传递 session_id 来指定会话。

核心原理解析

RunnableWithMessageHistory 通过加载和保存给定 session_id 的消息历史来保持对话状态。它通过 get_session_history 函数获取消息历史对象,这个函数应根据 session_id 返回一个 BaseChatMessageHistory 对象。

代码实现演示

首先,让我们创建一个 get_session_history 函数,这里我们使用 SQLite 数据库来保存对话历史。

from langchain_community.chat_message_histories import SQLChatMessageHistory

def get_session_history(session_id):
    return SQLChatMessageHistory(session_id, "sqlite:///memory.db")

接下来,我们使用 RunnableWithMessageHistory 进行对话处理:

from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_core.messages import HumanMessage
from langchain_openai import ChatOpenAI

# 假设我们选择 OpenAI 的模型
llm = ChatOpenAI(model="gpt-4o-mini")

runnable_with_history = RunnableWithMessageHistory(
    llm,
    get_session_history,
)

# 开始一段对话
response = runnable_with_history.invoke(
    [HumanMessage(content="hi - im bob!")],
    config={"configurable": {"session_id": "1"}},
)
print(response)

response = runnable_with_history.invoke(
    [HumanMessage(content="whats my name?")],
    config={"configurable": {"session_id": "1"}},
)
print(response)

应用场景分析

RunnableWithMessageHistory 适用于需要维护对话上下文的应用,例如客服机器人、虚拟助手等。通过保持每个会话的历史记录,可以为用户提供更连贯和连续的互动体验。

实践建议

  1. 确保 get_session_history 能够正确加载和保存历史记录,以维持对话上下文。
  2. 为每个用户/会话分配唯一的 session_id,从而管理多个对话线程。
  3. 根据实际需要选择合适的消息存储机制,如 SQLite、Redis 或其他数据库。

如果遇到问题欢迎在评论区交流。

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值