在构建聊天机器人时,传递对话状态至关重要。 RunnableWithMessageHistory
类允许我们为某些类型的链添加消息历史记录。它封装了另一个 Runnable
,并为它管理聊天消息历史。具体来说,它在将消息传递给 Runnable
之前加载对话中的先前消息,并在调用 Runnable
后保存生成的响应作为消息。
技术背景介绍
在创建对话应用程序时,管理消息历史是维持会话连贯性的重要部分。通过管理和传递消息历史,模型可以在应对多轮对话时保持上下文。RunnableWithMessageHistory
提供了一种机制,使用户能够在调用时通过传递 session_id
来指定会话。
核心原理解析
RunnableWithMessageHistory
通过加载和保存给定 session_id
的消息历史来保持对话状态。它通过 get_session_history
函数获取消息历史对象,这个函数应根据 session_id
返回一个 BaseChatMessageHistory
对象。
代码实现演示
首先,让我们创建一个 get_session_history
函数,这里我们使用 SQLite 数据库来保存对话历史。
from langchain_community.chat_message_histories import SQLChatMessageHistory
def get_session_history(session_id):
return SQLChatMessageHistory(session_id, "sqlite:///memory.db")
接下来,我们使用 RunnableWithMessageHistory
进行对话处理:
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_core.messages import HumanMessage
from langchain_openai import ChatOpenAI
# 假设我们选择 OpenAI 的模型
llm = ChatOpenAI(model="gpt-4o-mini")
runnable_with_history = RunnableWithMessageHistory(
llm,
get_session_history,
)
# 开始一段对话
response = runnable_with_history.invoke(
[HumanMessage(content="hi - im bob!")],
config={"configurable": {"session_id": "1"}},
)
print(response)
response = runnable_with_history.invoke(
[HumanMessage(content="whats my name?")],
config={"configurable": {"session_id": "1"}},
)
print(response)
应用场景分析
RunnableWithMessageHistory
适用于需要维护对话上下文的应用,例如客服机器人、虚拟助手等。通过保持每个会话的历史记录,可以为用户提供更连贯和连续的互动体验。
实践建议
- 确保
get_session_history
能够正确加载和保存历史记录,以维持对话上下文。 - 为每个用户/会话分配唯一的
session_id
,从而管理多个对话线程。 - 根据实际需要选择合适的消息存储机制,如 SQLite、Redis 或其他数据库。
如果遇到问题欢迎在评论区交流。
—END—