信号与系统(Python) 学习笔记 (8) 离散系统z域分析 -- z变换

8. 离散系统 z 域分析

取样
还原(有条件)
连续
离散

连 续      ∣      离 散 时 域    f ( t ) ⋆ h ( t ) ∣ f ( k ) ⋆ h ( k ) 变 换 域    { F ( j ω ) ⋅ H ( j ω ) F ( s ) ⋅ H ( s ) ∣ F ( z ) ⋅ H ( z ) \begin{aligned}连续 \;\; &\Big\vert\;\; 离散 \\ 时域\; f(t)\star h(t) &\Big\vert f(k) \star h(k) \\ 变换域\; \begin{cases} F(j\omega)\cdot H(j\omega) \\ F(s) \cdot H(s) \end{cases} &\Big\vert F(z) \cdot H(z) \end{aligned} f(t)h(t){F(jω)H(jω)F(s)H(s)f(k)h(k)F(z)H(z)


8.1. z 变换

  • 拉氏变换把连续系统微分方程转换为代数方程,同样地,也可以通过一种称为z变换数学工具,把差分方程转换为代数方程。

8.1.1. z 变换 定义

  • z变换 导出

  • 对连续信号进行均匀冲激取样后,就得到离散信号。

  • 取样信号:
    f s ( t ) = f ( t ) δ T ( t ) = ∑ k = − ∞ ∞ f ( k T ) δ ( t − k T ) f_s(t) = f(t) \delta_T(t) = \sum^{\infty}_{k=-\infty}f(kT)\delta(t-kT) fs(t)=f(t)δT(t)=k=f(kT)δ(tkT)

  • 两边取双边拉普拉斯变换,时移性质,得:
    F S b ( s ) = ∑ k = − ∞ ∞ f ( k T ) e − k T s F_{Sb}(s) = \sum^{\infty}_{k=-\infty} f(kT)e^{-kTs} FSb(s)=k=f(kT)ekTs

  • z = e s T {\color{red}z=e^{sT}} z=esT, 上式将成为复变量 z z z 的函数, 用 F ( z ) F(z) F(z) 表示; f ( k T ) → f ( k ) f(kT)\to f(k) f(kT)f(k), 得
    F b ( z ) = ∑ k = − ∞ ∞ f ( k ) z − k    称 为 序 列 f ( k ) 的 双 边 z 变 换 F_b(z) = \sum^{\infty}_{k=-\infty} f(k) z^{-k}\; 称为 {\color{blue}序列 f(k)}的{\color{red}双边 z 变换} Fb(z)=k=f(k)zkf(k)z
    F ( z ) = ∑ k = 0 ∞ f ( k ) z − k    称 为 序 列 f ( k ) 的 单 边 z 变 换 F(z) = \sum^{\infty}_{{\color{red}k=0}} f(k) z^{-k}\; 称为 {\color{blue}序列 f(k)}的{\color{red}单边 z 变换} F(z)=k=0f(k)zkf(k)z

  • f ( k ) f(k) f(k) 为因果序列,则单边、双边 z z z 变换相等,否则不同。今后在不致混淆的情况下,统称它们为 z z z 变换。

  • 与拉普拉斯变换相同,双边变换会涉及到多值的问题(双边z 变换必须标明收敛域),所以一般使用单边变换。

  • 表示:
    F ( z ) = Z [ f ( k ) ] F(z) = \mathcal{Z}[f(k)] F(z)=Z[f(k)]
    f ( k ) = Z − 1 [ F ( z ) ] f(k) = \mathcal{Z}^{-1}[F(z)] f(k)=Z1[F(z)]
    f ( k ) ⟷ F ( z ) f(k) \longleftrightarrow F(z) f(k)F(z)

8.1.2. z 变换 收敛域

  • 当幂级数收敛时, z z z 变换才存在,即满足绝对可和条件

∑ k = − ∞ ∞ ∣ f ( k ) z − k ∣ < ∞ \sum^{\infty}_{k=-\infty} \big\lvert f(k) z^{-k}\big\rvert < \infty k=f(k)zk<

  • 它是序列 f ( k ) f(k) f(k) z z z 变换存在的充要条件

  • 定义:

    • 对于序列 f ( k ) f(k) f(k), 满足
      ∑ k = − ∞ ∞ ∣ f ( k ) z − k ∣ < ∞ \sum^{\infty}_{k=-\infty} \big\lvert f(k) z^{-k}\big\rvert < \infty k=f(k)zk<
    • 所有 z z z 值组成的集合称为其 z z z 变换 F ( z ) F(z) F(z)收敛域
  • 例: 因果序号 f ( k ) = a k ε ( k ) f(k) = a^k \varepsilon(k) f(k)=akε(k) z z z 变换 ( a a a 为常数)。
    F ( z ) = ∑ k = 1 ∞ a k z − k = lim ⁡ N → ∞ ∑ k = 1 N ( a z − ) k = lim ⁡ N → ∞ 1 − ( a z − 1 ) N + 1 1 − a z − 1 F(z) = \sum^{\infty}_{k=1}a^kz^{-k} = \lim_{N\to\infty}\sum^{N}_{k=1}(az^{-})^k = \lim_{N\to\infty} \frac{1-(az^{-1})^{N+1}}{1-az^{-1}} F(z)=k=1akzk=Nlimk=1N(az)k=Nlim1az11(az1)N+1

    • 仅当 ∣ a z − 1 ∣ < 1 \lvert az^{-1}\rvert <1 az1<1, 即 ∣ z ∣ > ∣ a ∣ \vert z\vert > \vert a \vert z>a 时, 其 z 变换存在。
    • F ( z ) = z z − a F(z) = \displaystyle \frac{z}{z-a} F(z)=zaz
    • 收敛域为 ∣ z ∣ > ∣ a ∣ \vert z\vert >\vert a \vert z>a (某个圆之外)
  • 注意

    • 双边z 变换必须标明收敛域
    • 对单边z变换,其收敛域是某个圆外的区域,可省略。
  • 结论:

双 边 F b ( z ) + 收 敛 域 ⟵ ⟶ f ( k ) 单 边 F ( z ) ⟵ ⟶ f ( k ) \begin{aligned}双边 F_b(z) + 收敛域 \longleftarrow & \longrightarrow f(k) \\ 单边 F(z) \longleftarrow & \longrightarrow f(k) \end{aligned} Fb(z)+F(z)f(k)f(k)

  • 离散序列的收敛域情况分类
序列特性收敛域特性 f ( k ) = f(k)= f(k)=
有限长序列常为整个平面常为整个平面 δ ( k ) ,    ε ( k + 1 ) − ε ( k − 2 ) \delta(k),\;\varepsilon(k+1)-\varepsilon(k-2) δ(k),ε(k+1)ε(k2)
因果序列某个圆外区域某个圆外区域 a k ε ( k ) a^k\varepsilon(k) akε(k)
反因果序列某个圆内区域某个圆内区域 b k ε ( − k − 1 ) b^k\varepsilon(-k-1) bkε(k1)
双边序列(若存在)环状区域(若存在)环状区域 { b k ,    k < 0 a k ,    k ≥ 0 , ∣ a ∣ < ∣ b ∣ \begin{aligned}\begin{cases}b^k,\; &k<0 \\ a^k ,\; & k\geq 0 \end{cases}, \vert a \vert < \vert b \vert \end{aligned} {bk,ak,k<0k0,a<b
双边序列(不存在)环状区域(不存在)环状区域 { a k ,    k < 0 b k ,    k ≥ 0 , ∣ a ∣ < ∣ b ∣ \begin{aligned}\begin{cases}a^k,\; &k<0 \\ b^k ,\; & k\geq 0 \end{cases}, \vert a \vert < \vert b \vert \end{aligned} {ak,bk,k<0k0,a<b

8.1.3. 常用序列的z变换

δ ( k ) ⟵ ⟶ 1 ,    整 个 z 平 面 δ ( k − m ) ⟵ ⟶ z − m ,    ∣ z ∣ > 0 ε ( k ) ⟵ ⟶ z z − 1 ,    ∣ z ∣ > 1 − ε ( − k − 1 ) ⟵ ⟶ z z − 1 ,    ∣ z ∣ < 1 a k ε ( k ) ⟵ ⟶ z z − a ,    ∣ z ∣ > ∣ a ∣ − a k ε ( − k − 1 ) ⟵ ⟶ z z − a ,    ∣ z ∣ < ∣ a ∣ \begin{aligned} \displaystyle \delta(k) \longleftarrow & \longrightarrow 1,\; 整个 z 平面 \\ \delta(k-m) \longleftarrow & \longrightarrow z^{-m},\; \lvert z \rvert > 0 \\ \varepsilon(k)\longleftarrow & \longrightarrow \frac{z}{z-1},\; \lvert z \rvert > 1 \\ -\varepsilon(-k-1)\longleftarrow & \longrightarrow \frac{z}{z-1},\; \lvert z \rvert < 1 \\ a^k \varepsilon(k) \longleftarrow & \longrightarrow \frac{z}{z-a},\; \lvert z \rvert > \lvert a \rvert \\ -a^k \varepsilon(-k-1) \longleftarrow & \longrightarrow \frac{z}{z-a},\; \lvert z \rvert < \lvert a \rvert \\\end{aligned} δ(k)δ(km)ε(k)ε(k1)akε(k)akε(k1)1,zzm,z>0z1z,z>1z1z,z<1zaz,z>azaz,z<a

8.1.4. z变换 性质

  • 说明:z变换性质,若无特殊说明,对单边和双边z变换均适用。
线性性质

  • f 1 ( k ) ⟵ ⟶ F 1 ( z ) ,    有 常 数 a 1 , a 2 ,    α 1 < ∣ z ∣ < β 1 f 2 ( k ) ⟵ ⟶ F 2 ( z ) ,    有 常 数 a 1 , a 2 ,    α 2 < ∣ z ∣ < β 2 a 1 f 1 ( k ) + a 2 f 2 ( k ) ⟵ ⟶ a 1 F 1 ( z ) + a 2 F 2 ( z ) ,    max ⁡ ( α 1 , α 2 ) < ∣ z ∣ < max ⁡ ( β 1 , β 2 ) \begin{aligned} \displaystyle f_1(k) \longleftarrow & \longrightarrow F_1(z),\; & 有常数a_1,a_2,\; \alpha_1<\lvert z \rvert <\beta_1 \\ f_2(k) \longleftarrow & \longrightarrow F_2(z),\; & 有常数a_1,a_2,\; \alpha_2<\lvert z \rvert <\beta_2 \\ a_1f_1(k) + a_2f_2(k) \longleftarrow & \longrightarrow a_1F_1(z) + a_2F_2(z) ,\;& \max(\alpha_1,\alpha_2)<\lvert z \rvert <\max(\beta_1, \beta_2)\\ \end{aligned} f1(k)f2(k)a1f1(k)+a2f2(k)F1(z),F2(z),a1F1(z)+a2F2(z),a1,a2,α1<z<β1a1,a2,α2<z<β2max(α1,α2)<z<max(β1,β2)

  • 其收敛域至少是 F 1 ( z ) F_1(z) F1(z) F 2 ( z ) F_2(z) F2(z) 收敛域的相交部分

移序性质
  • 双边z变换的移位:


    • f ( k ) ⟵ ⟶ F ( z ) ,    整 数 m > 0 ,    α < ∣ z ∣ < β f ( k ± m ) ⟵ ⟶ z ± m F ( z ) ,    α < ∣ z ∣ < β \begin{aligned} \displaystyle f(k) \longleftarrow & \longrightarrow F(z),\; & 整数 m>0,\; \alpha<\lvert z \rvert <\beta \\ f(k\pm m) \longleftarrow & \longrightarrow z^{\pm m}F(z) ,\;& \alpha<\lvert z \rvert <\beta \\ \end{aligned} f(k)f(k±m)F(z),z±mF(z),m>0,α<z<βα<z<β
  • 单边z变换的移位:


    • f ( k ) ⟵ ⟶ F ( z ) ,    整 数 m > 0 ,    ∣ z ∣ > α f ( k − m ) ⟵ ⟶ z − m F ( z ) + ∑ k = 0 m − 1 f ( k − m ) z − k ,    ∣ z ∣ > α f ( k + m ) ⟵ ⟶ z + m F ( z ) − ∑ k = 0 m − 1 f ( k ) z m − k ,    ∣ z ∣ > α \begin{aligned} \displaystyle f(k) \longleftarrow & \longrightarrow F(z),\; & 整数 m>0,\; \lvert z \rvert >\alpha \\ f(k - m) \longleftarrow & \longrightarrow z^{- m}F(z) + \sum^{m-1}_{k=0}f(k-m)z^{-k},\;& \lvert z \rvert >\alpha \\ f(k + m) \longleftarrow & \longrightarrow z^{+ m}F(z) - \sum^{m-1}_{k=0}f(k)z^{m-k},\;& \lvert z \rvert >\alpha \\ \end{aligned} f(k)f(km)f(k+m)F(z),zmF(z)+k=0m1f(km)zk,z+mF(z)k=0m1f(k)zmk,m>0,z>αz>αz>α

右移

左移

  • 因果序列z变换的移位:

    • f ( k ) ⟵ ⟶ F ( z ) ,    整 数 m > 0 ,    ∣ z ∣ > α f ( k − m ) ε ( k − m ) ⟵ ⟶ z − m F ( z ) ,    ∣ z ∣ > α f ( k − m ) ⟵ ⟶ z − m F ( z ) ,    ∣ z ∣ > α \begin{aligned} \displaystyle f(k) \longleftarrow & \longrightarrow F(z),\; & 整数 m>0,\; \lvert z \rvert >\alpha \\ f(k - m)\varepsilon(k-m) \longleftarrow & \longrightarrow z^{- m}F(z),\;& \lvert z \rvert >\alpha \\ f(k - m) \longleftarrow & \longrightarrow z^{- m}F(z),\;& \lvert z \rvert >\alpha \\ \end{aligned} f(k)f(km)ε(km)f(km)F(z),zmF(z),zmF(z),m>0,z>αz>αz>α
反折性质
  • k域反转(仅适用双边z变换):

    • f ( k ) ⟵ ⟶ F ( z ) ,    α < ∣ z ∣ < β f ( − k ) ⟵ ⟶ F ( z − 1 ) ,    1 β < ∣ z ∣ < 1 α \begin{aligned} \displaystyle f(k) \longleftarrow & \longrightarrow F(z),\; & \alpha<\lvert z \rvert <\beta \\ f(-k) \longleftarrow & \longrightarrow F(z^{-1}) ,\;& \frac{1}{\beta}<\lvert z \rvert <\frac{1}{\alpha} \\ \end{aligned} f(k)f(k)F(z),F(z1),α<z<ββ1<z<α1
尺度变换特性
  • 序列乘 α k ,    α ≠ 0 \alpha^k,\; \alpha \neq 0 αk,α=0


  • f ( k ) ⟵ ⟶ F ( z ) ,    有 常 数 a ,    α < ∣ z ∣ < β a k f ( k ) ⟵ ⟶ F ( z a ) ,    ∣ a ∣ α < ∣ z ∣ < ∣ a ∣ β \begin{aligned} \displaystyle f(k) \longleftarrow & \longrightarrow F(z),\; & 有常数a,\; \alpha<\lvert z \rvert <\beta \\ a^kf(k) \longleftarrow & \longrightarrow F(\frac{z}{a}) ,\;& \lvert a \rvert \alpha<\lvert z \rvert< \lvert a \rvert \beta\\ \end{aligned} f(k)akf(k)F(z),F(az),a,α<z<βaα<z<aβ

微分特性
  • 序列乘 k k k


  • f ( k ) ⟵ ⟶ F ( z ) ,    α < ∣ z ∣ < β k f ( k ) ⟵ ⟶ ( − z ) d d z F ( z ) ,    α < ∣ z ∣ < β k 2 f ( k ) ⟵ ⟶ ( − z ) d d z [ ( − z ) d d z F ( z ) ] ,    α < ∣ z ∣ < β k m f ( k ) ⟵ ⟶ ( − z ) d d z [ ⋯ ( − z ) d d z [ ( − z ) d d z F ( z ) ] ⋯ ] m 次 ,    α < ∣ z ∣ < β \begin{aligned} \displaystyle f(k) \longleftarrow & \longrightarrow F(z),\; & \alpha<\lvert z \rvert <\beta \\ kf(k) \longleftarrow & \longrightarrow (-z)\frac{d}{dz} F(z) ,\;& \alpha<\lvert z \rvert <\beta \\ k^2f(k) \longleftarrow & \longrightarrow (-z)\frac{d}{dz} \big[(-z)\frac{d}{dz} F(z)\big] ,\;& \alpha<\lvert z \rvert <\beta \\ k^mf(k) \longleftarrow & \longrightarrow \underset{m次}{(-z)\frac{d}{dz} \Big[\cdots (-z)\frac{d}{dz} \big[(-z)\frac{d}{dz} F(z)\big] \cdots \Big]} ,\;& \alpha<\lvert z \rvert <\beta \\ \end{aligned} f(k)kf(k)k2f(k)kmf(k)F(z),(z)dzdF(z),(z)dzd[(z)dzdF(z)],m(z)dzd[(z)dzd[(z)dzdF(z)]],α<z<βα<z<βα<z<βα<z<β

时域卷积
  • 若:
    f 1 ( k ) ⟵ ⟶ F 1 ( z ) ,    α 1 < ∣ z ∣ < β 1 f 2 ( k ) ⟵ ⟶ F 2 ( z ) ,    α 2 < ∣ z ∣ < β 2 f 1 ( k ) ⋆ f 2 ( k ) ⟵ ⟶ F 1 ( z ) ⋅ F 2 ( z ) ,    max ⁡ ( α 1 , α 2 ) < ∣ z ∣ < min ⁡ ( β 1 , β 2 ) \begin{aligned} \displaystyle f_1(k) \longleftarrow & \longrightarrow F_1(z),\; & \alpha_1<\lvert z \rvert <\beta_1 \\ f_2(k) \longleftarrow & \longrightarrow F_2(z),\; & \alpha_2<\lvert z \rvert <\beta_2 \\ f_1(k) \star f_2(k) \longleftarrow & \longrightarrow F_1(z) \cdot F_2(z) ,\;& \max(\alpha_1,\alpha_2)<\lvert z \rvert <\min(\beta_1, \beta_2)\\ \end{aligned} f1(k)f2(k)f1(k)f2(k)F1(z),F2(z),F1(z)F2(z),α1<z<β1α2<z<β2max(α1,α2)<z<min(β1,β2)
  • Remark:
    1. 收敛域一般为 F 1 ( z ) F_1(z) F1(z) F 2 ( z ) F_2(z) F2(z) 收敛域的相交部分;
    2. 对单边z变换,要求: f 1 ( k ) f_1(k) f1(k) f 2 ( k ) f_2(k) f2(k) 为因果序列。
部分和

  • f ( k ) ⟵ ⟶ F ( z ) ,    α < ∣ z ∣ < β ∑ i = − ∞ k f ( i ) ⟵ ⟶ z z − 1 F ( z ) ,    max ⁡ ( α , 1 ) < ∣ z ∣ < β f ( k ) ⋆ ε ( k ) ⟵ ⟶ z z − 1 F ( z ) ,    max ⁡ ( α , 1 ) < ∣ z ∣ < β \begin{aligned} \displaystyle f(k) \longleftarrow & \longrightarrow F(z),\; & \alpha<\lvert z \rvert <\beta \\ \sum^{k}_{i=-\infty}f(i) \longleftarrow & \longrightarrow \frac{z}{z-1}F(z) ,\;& \max(\alpha,1)<\lvert z \rvert <\beta \\ f(k)\star \varepsilon(k) \longleftarrow & \longrightarrow \frac{z}{z-1}F(z) ,\;& \max(\alpha,1)<\lvert z \rvert <\beta \\ \end{aligned} f(k)i=kf(i)f(k)ε(k)F(z),z1zF(z),z1zF(z),α<z<βmax(α,1)<z<βmax(α,1)<z<β

8.1.5. 初值 终值 定理

  • 初值定理适用于右边序列,即适用于 k < M k<M k<M ( M M M为整数)时 f ( k ) = 0 f(k)=0 f(k)=0 的序列。由象函数直接求序列的初值 f ( M ) , f ( M + 1 ) , ⋯ f(M),f(M+1), \cdots f(M),f(M+1), 而不必求得原序列。

  • 初值定理:

    • 如果序列在 k < M k<M k<M 时, f ( k ) = 0 f(k)=0 f(k)=0 f ( k ) ↔ F ( z ) f(k)\leftrightarrow F(z) f(k)F(z) α < ∣ z ∣ < ∞ \alpha<\lvert z\rvert<\infty α<z<
    • 则序列的初值:
      f ( M ) = lim ⁡ z → ∞ z m F ( z ) f(M) = \lim_{z\to\infty} z^m F(z) f(M)=zlimzmF(z)
    • 对因果序列 f ( k ) f(k) f(k):
      f ( 0 ) = lim ⁡ z → ∞ F ( z ) f(0) = \lim_{z\to\infty} F(z) f(0)=zlimF(z)
  • 终值定理:

    • 如果序列存在终值,即:
      f ( ∞ ) = lim ⁡ k → ∞ F ( k ) f(\infty) =\lim_{k\to \infty} F(k) f()=klimF(k)
    • 则序列的终值:
      f ( ∞ ) = lim ⁡ z → 1 z − 1 z F ( z ) = lim ⁡ z → 1 ( z − 1 ) F ( z ) f(\infty) = \lim_{z\to1} \frac{z-1}{z}F(z) = \lim_{z\to1}(z-1) F(z) f()=z1limzz1F(z)=z1lim(z1)F(z)
    • 注意:收敛域要求含单位圆。

8.1.6. 逆z变换

  • F ( z ) F(z) F(z) f ( k ) f(k) f(k)

  • F ( z ) F(z) F(z) 的逆z变换:

f ( k ) = 1 2 π j ∮ c F ( z ) z k − 1 d z ,    − ∞ < k < ∞ f(k) = \frac{1}{2\pi j} \oint_c F(z) z^{k-1} dz, \; -\infty < k < \infty f(k)=2πj1cF(z)zk1dz,<k<

  • 逆变换的计算方法:

    1. 反演积分法(留数法);
    2. 幂级数展开法;有局限性
    3. 部分分式展开法;
    4. 用 z 变换性质求逆 z 变换。组合使用
  • 一般而言,双边序列 f ( k ) f(k) f(k) 可分解为因果序列 f 1 ( k ) f_1(k) f1(k) 和反因果序列 f 2 ( k ) f_2(k) f2(k) 两部分,即
    f ( k ) = f 2 ( k ) + f 1 ( k ) = f ( k ) ε ( − k − 1 ) + f ( k ) ε ( k ) f(k) = f_2(k) + f_1(k) = f(k) \varepsilon(-k-1)+f(k)\varepsilon(k) f(k)=f2(k)+f1(k)=f(k)ε(k1)+f(k)ε(k)

  • 相应地,其z变换也分为两部分
    F ( z ) = F 2 ( z ) + F 1 ( z ) ,    α < ∣ z ∣ < β F(z) = F_2(z) + F_1(z),\; \alpha<\lvert z \rvert <\beta F(z)=F2(z)+F1(z),α<z<β

    • 其中:
      F 1 ( z ) = Z [ f ( k ) ε ( k ) ] = ∑ k = 0 ∞ f ( k ) z − k ,    ∣ z ∣ > α F_1(z) = \mathcal{Z} \big[f(k) \varepsilon(k)\big] = \sum^{\infty}_{k=0} f(k) z^{-k},\; \lvert z \rvert >\alpha F1(z)=Z[f(k)ε(k)]=k=0f(k)zk,z>α
      F 2 ( z ) = Z [ f ( k ) ε ( − k − 1 ) ] = ∑ k = − ∞ − 1 f ( k ) z − k ,    ∣ z ∣ < β F_2(z) = \mathcal{Z} \big[f(k) \varepsilon(-k-1)\big] = \sum^{-1}_{k=-\infty} f(k) z^{-k},\; \lvert z \rvert <\beta F2(z)=Z[f(k)ε(k1)]=k=1f(k)zk,z<β
  • 已知象函数 F ( z ) F(z) F(z) 时,根据给定的收敛域不难由 F ( z ) F(z) F(z) 分解为 F 1 ( z ) F_1(z) F1(z) F 2 ( z ) F_2(z) F2(z),分别求对应的原序列 f 1 ( k ) f_1(k) f1(k) f 2 ( k ) f_2(k) f2(k) ,根据线性性质,将两者相加原序列 f ( k ) f(k) f(k)

  • 幂级数展开法

    • 根据z变换的定义,因果序列和反因果序列的象函数分别是 z − 1 z^{-1} z1 z z z的幂级数; 其系数就是相应的序列值。
    • 降幂排列
      F 1 ( z ) = ∑ k = 0 ∞ f 1 ( k ) z − k = f ( 0 ) + f ( 1 ) z − 1 + f ( 2 ) z − 2 + ⋯ F_1(z) = \sum^{\infty}_{k=0} f_1(k) z^{-k} = f(0)+f(1)z^{-1} + f(2)z^{-2}+\cdots F1(z)=k=0f1(k)zk=f(0)+f(1)z1+f(2)z2+
      f ( k ) = { f ( 0 ) , f ( 1 ) , f ( 2 ) , ⋯   } f(k) = \{f(0), f(1), f(2), \cdots \} f(k)={f(0),f(1),f(2),}
    • 升幂排列
      F 2 ( z ) = ∑ k = − ∞ − 1 f 2 ( k ) z − k = f ( − 1 ) z 1 + f ( − 2 ) z 2 + ⋯ F_2(z) = \sum^{-1}_{k=-\infty} f_2(k) z^{-k} = f(-1)z^{1} + f(-2)z^{2}+\cdots F2(z)=k=1f2(k)zk=f(1)z1+f(2)z2+
      f ( k ) = { ⋯   , f ( − 3 ) , f ( − 2 ) , f ( − 1 ) } f(k) = \{\cdots, f(-3), f(-2) ,f(-1) \} f(k)={,f(3),f(2),f(1)}
    • 原序列通常难以写成闭合形式
  • 部分分式展开法
    F ( z ) = B ( z ) A ( z ) = b m z m + b m − 1 z m − 1 + ⋯ + b 1 z + b 0 z n + a n − 1 z n − 1 + ⋯ + a 1 z + a 0 ,    m ≤ n F(z) = \displaystyle \frac{B(z)}{A(z)} = \displaystyle \frac{b_m z^m + b_{m-1}z^{m-1} + \cdots + b_1 z + b_0}{z^n + a_{n-1}z^{n-1} + \cdots +a_1z+a_0}, \; m\leq n F(z)=A(z)B(z)=zn+an1zn1++a1z+a0bmzm+bm1zm1++b1z+b0,mn

    1. F ( z ) F(z) F(z)单极点 ,且不为零
      F ( z ) z = K 0 z + K 1 z − z 1 + ⋯ + K i z − z i + ⋯ + K n z − z n \displaystyle {\color{blue}\frac{F(z)}{z}} = \frac{K_0}{z}+\frac{K_1}{z-z_1}+ \cdots + \frac{K_i}{z-z_i}+ \cdots + \frac{K_n}{z-z_n} zF(z)=zK0+zz1K1++zziKi++zznKn
      K i = ( z − z i ) F ( z ) z ∣ z = z i K_i = (z - z_i) \frac{F(z)}{z} \big\vert _{z=z_i} Ki=(zzi)zF(z)z=zi
      F ( z ) = K 0 + ∑ i = 1 n K i z z − z i F(z) = K_0 + \sum^{n}_{i=1}\frac{K_i {\color{blue}z}}{{\color{blue}z-z_i}} F(z)=K0+i=1nzziKiz
      * 根据收敛域, 将上式划分为 F 1 ( z ) ( ∣ z ∣ > α ) F_1(z)(\lvert z \rvert >\alpha) F1(z)(z>α) F 2 ( z ) ( ∣ z ∣ < β ) F_2(z)(\lvert z\rvert < \beta) F2(z)(z<β) 两部分,由如下已知变换对,来求原函数。
      δ ( k ) ⟵ ⟶ 1 ,    整 个 z 平 面 a k ε ( k ) ⟵ ⟶ z z − a ,    ∣ z ∣ > ∣ a ∣ − a k ε ( − k − 1 ) ⟵ ⟶ z z − a ,    ∣ z ∣ < ∣ a ∣ \begin{aligned} \displaystyle \delta(k) \longleftarrow & \longrightarrow 1,\; 整个 z 平面 \\ a^k \varepsilon(k) \longleftarrow & \longrightarrow \frac{z}{z-a},\; \lvert z \rvert > \lvert a \rvert \\ -a^k \varepsilon(-k-1) \longleftarrow & \longrightarrow \frac{z}{z-a},\; \lvert z \rvert < \lvert a \rvert \\\end{aligned} δ(k)akε(k)akε(k1)1,zzaz,z>azaz,z<a

    2. 特例 F ( z ) F(z) F(z) 包含共轭复根 时 ( z 1 , 2 = c ± j d = α e ± j β z_{1,2} = c \pm jd = \alpha e^{\pm j\beta} z1,2=c±jd=αe±jβ):
      F ( z ) z = K 1 z − c − j d + K 1 ∗ z − c + j d K 1 = ∣ K 1 ∣ e j θ F ( z ) = ∣ K 1 ∣ e j θ z z − α e j β + ∣ K 1 ∣ e − j θ z z − α e − j β \begin{aligned} \frac{F(z)}{z} &= \displaystyle \frac{K_1}{z-c-jd}+\frac{K_1^*}{z-c+jd}\\ K_1 &= \lvert K_1\rvert e^{j\theta} \\ F(z) & = \displaystyle \frac{\lvert K_1\rvert e^{j\theta}z}{z-\alpha e^{j\beta}}+\frac{\lvert K_1 \rvert e^{-j\theta}z}{z-\alpha e^{-j\beta}}\\ \end{aligned} zF(z)K1F(z)=zcjdK1+zc+jdK1=K1ejθ=zαejβK1ejθz+zαejβK1ejθz
      若 ∣ z ∣ > α ,    f ( k ) = 2 ∣ k 1 ∣ α k cos ⁡ ( β k + θ ) ε ( k ) 若 \lvert z \rvert > \alpha, \; f(k) = 2 \lvert k_1 \rvert \alpha^k \cos(\beta k + \theta) \varepsilon(k) z>α,f(k)=2k1αkcos(βk+θ)ε(k)
      若 ∣ z ∣ < α ,    f ( k ) = − 2 ∣ k 1 ∣ α k cos ⁡ ( β k + θ ) ε ( − k − 1 ) 若 \lvert z \rvert < \alpha, \; f(k) = -2 \lvert k_1 \rvert \alpha^k \cos(\beta k + \theta) \varepsilon(-k-1) z<α,f(k)=2k1αkcos(βk+θ)ε(k1)

    3. F ( z ) F(z) F(z)重极点 (重根)

      • A ( z ) = 0 A(z) = 0 A(z)=0 z = p 1 z=p_1 z=p1 处有 r r r 重根,
        F ( z ) = F a ( z ) + F b ( z ) = K 11 z ( z − a ) r + K 12 z ( z − a ) r − 1 + ⋯ + K 1 r z ( z − a ) + F b ( z ) F(z) = F_a(z) + F_b(z) = \frac{K_{11}z}{(z-a)^r}+ \frac{K_{12}z}{(z-a)^{r-1}}+ \cdots + \frac{K_{1r}z}{(z-a)}+F_b(z) F(z)=Fa(z)+Fb(z)=(za)rK11z+(za)r1K12z++(za)K1rz+Fb(z)
        K 1 i = 1 ( i − 1 ) ! d i − 1 d z i − 1 [ ( z − a ) r F ( z ) z ] ∣ z = a K_{1i} = \displaystyle \frac{1}{(i-1)!} \frac{d^{i-1}}{dz^{i-1}}[{\color{red}(z - a)^r \frac{F(z)}{z}}] \Big\vert _{z=a} K1i=(i1)!1dzi1di1[(za)rzF(z)]z=a
      • F ( z ) F(z) F(z) 展开式中含 z ( z − a ) r \displaystyle\frac{z}{(z-a)^r} (za)rz 项 ( r > 1 r>1 r>1), 则逆变换为:
      • ∣ z ∣ > α \lvert z \rvert >\alpha z>α, 对应原序列为因果序列:
        k ( k − 1 ) ⋯ ( k − r + 2 ) ( r − 1 ) ! a k − r + 1 ε ( k ) \frac{k(k-1)\cdots (k-r+2)}{(r-1)!}a^{k-r+1} \varepsilon(k) (r1)!k(k1)(kr+2)akr+1ε(k)
  • 推导记忆:
    Z [ a k ε ( k ) ] = z z − a Z [ k a k − 1 ε ( k ) ] = z ( z − a ) 2 Z [ k ( k − 1 ) a k − 2 ε ( k ) ] = 2 z ( z − a ) 3 Z [ 1 2 k ( k − 1 ) a k − 2 ε ( k ) ] = z ( z − a ) 3 \begin{aligned} \mathcal{Z}\big[a^k \varepsilon(k)\big] &= \frac{z}{z-a}\\ \mathcal{Z}\big[ka^{k-1} \varepsilon(k)\big] &= \frac{z}{(z-a)^2}\\ \mathcal{Z}\big[k(k-1)a^{k-2} \varepsilon(k)\big] &= \frac{2 z}{(z-a)^3}\\ \mathcal{Z}\big[\frac{1}{2}k(k-1)a^{k-2} \varepsilon(k)\big] &= \frac{z}{(z-a)^3}\end{aligned} Z[akε(k)]Z[kak1ε(k)]Z[k(k1)ak2ε(k)]Z[21k(k1)ak2ε(k)]=zaz=(za)2z=(za)32z=(za)3z

8.1.7 z变换与拉普拉斯变换的关系

Z平面与S平面的映射关系

z = e s T z = e^{sT} z=esT
s = 1 T ln ⁡ z s = \frac{1}{T}\ln z s=T1lnz

  • T T T 是序列的时间间隔

  • ω s = 2 π T \omega_s = \frac{2\pi}{T} ωs=T2π 重复频率

  • 为了说明s与z的映射关系

  • s表示成直角坐标形式
    s = σ + j ω s = \sigma + j\omega s=σ+jω

  • z 表示成极坐标形式
    z = r e j θ z = r e^{j\theta} z=rejθ
    z = r e j θ = e ( σ + j ω ) T = e σ T e j ω T z = r e^{j\theta} = e^{(\sigma + j\omega) T} = e^{\sigma T}e^{j\omega T} z=rejθ=e(σ+jω)T=eσTejωT

  • 于是得到
    r = e σ T = e 2 π ω s σ r = e^{\sigma T} = e^{\frac{2\pi}{\omega_s}{\sigma}} r=eσT=eωs2πσ
    θ = ω T = 2 π ω ω s \theta = \omega T = 2\pi \frac{\omega}{\omega_s} θ=ωT=2πωsω

  • 上式表明s平面与z平面有如下的映射关系:

  1. s平面上的虚轴 ( σ = 0 ,    s = j ω \sigma=0,\;s=j\omega σ=0s=jω) 映射到z平面是单位圆 r = 1 r=1 r=1
    其右半平面 σ > 0 \sigma>0 σ>0 映射到 z 平面的单位圆外 r > 1 r>1 r>1
    而左半平面 σ < 0 \sigma<0 σ<0 映射到 z 平面的单位圆内 r < 1 r<1 r<1
  2. s平面的实轴( s = σ , ω = 0 s=\sigma,\omega=0 s=σω=0) 映射到z平面的正实轴;
    原点( s = 0 s=0 s=0)映射到z平面的正实轴上一点( r = 1 , θ = 0 r=1,\theta=0 r=1,θ=0) 。
  3. 由于 e j θ e^{j\theta} ejθ 是以 ω s \omega_s ωs 为周期的周期函数,
    因此在 s 平面上沿虚轴移动对应于 z 平面上沿单位圆周期旋转,每平移 ω s \omega_s ωs ,则沿单位圆转一圈。
    所以 s ∼ z s\sim z sz 映射并不是单值的。
s变换与z变换的转换公式
  • z变换的定义式是通过理想取样信号的拉普拉斯变换引出的,由此,离散序列的z变换和理想取样信号的拉普拉斯变换之间具有如下关系:
    F ( z ) ∣ z = e s T = F s ( s ) F(z)\big\vert_{z=e^{sT}} = F_s(s) F(z)z=esT=Fs(s)

  • 表明: z变换式中令 z = e s T z = e^{sT} z=esT, 则变换式就成为相应的理想取样信号的拉普拉斯变换。

    • 如果进一步地,令拉普拉斯变换中的变量 s = j ω s=j\omega s=jω,则
      F ( z ) ∣ z = e j ω T = F s ( j ω ) F(z) \big\vert_{z=e^{j\omega T}} = F_s(j\omega) F(z)z=ejωT=Fs(jω)
    • 上式变为与序列相对应的理想取样信号的傅里叶变换。
  • 讨论:若连续信号 f ( t ) f(t) f(t) 由N项指数信号相加而成(单极点):
    f ( t ) = f 1 ( t ) + f 2 ( t ) + ⋯ + f N ( t ) = ∑ i = 1 N f i ( t ) = ∑ i = 1 N A i e p i t ε ( t ) f(t) = f_1(t) + f_2(t) + \cdots + f_N(t) = \sum^{N}_{i=1}f_i(t) = \sum^{N}_{i=1} A_i e^{p_i t} \varepsilon (t) f(t)=f1(t)+f2(t)++fN(t)=i=1Nfi(t)=i=1NAiepitε(t)

    • 容易求得,其拉普拉斯变换为:
      F ( s ) = ∑ i = 1 N A i s − p i F(s) = \sum^{N}_{i=1} \frac{A_i}{s-p_i} F(s)=i=1NspiAi
    • 对应的采样离散序列 f ( k ) f(k) f(k) 由 N 项指数序列相加而成
      f ( k ) = f 1 ( k ) + f 2 ( k ) + ⋯ + f N ( k ) = ∑ i = 1 N f i ( k ) = ∑ i = 1 N A i e p i k T ε ( k ) f(k) = f_1(k) + f_2(k) + \cdots + f_N(k) = \sum^{N}_{i=1}f_i(k) = \sum^{N}_{i=1} A_i {\color{red}e^{p_i kT}} \varepsilon (k) f(k)=f1(k)+f2(k)++fN(k)=i=1Nfi(k)=i=1NAiepikTε(k)
    • 它的z变换为
      F ( z ) = ∑ i = 1 N A i z z − e p i T F(z) = \sum^{N}_{i=1}\frac{A_i z}{z- e^{p_i T}} F(z)=i=1NzepiTAiz
      F ( s ) = ∑ i = 1 N A i z − p i F(s) = \sum^{N}_{i=1}\frac{A_i}{z- p_i} F(s)=i=1NzpiAi
  • 结论:如果 F ( s ) F(s) F(s) 有N个单极点 p i p_i pi,则相应的z变换即为 F ( z ) F(z) F(z)

8.1.8. 差分方程的z变换解

  • 单边 z 变换将系统的初始条件自然地包含于其代数方程中,故可求系统的零输入、零状态响应和全响应。
    ∑ i = 0 n a b − i y ( k − i ) = ∑ j = 0 m b m − j f ( k − j ) \sum^{n}_{i=0} a_{b-i}y(k-i) = \sum^{m}_{j=0} b_{m-j} f(k-j) i=0nabiy(ki)=j=0mbmjf(kj)

  • f ( k ) f(k) f(k) k = 0 k=0 k=0 时接入,系统初始状态为 y ( − 1 ) , y ( − 2 ) , ⋯ y ( − n ) y(-1),y(-2),\cdots y(-n) y(1),y(2),y(n)

  • 取单边 z 变换得:
    ∑ i = 0 n a n − i [ z − i Y ( z ) + ∑ k = 0 i − 1 y ( k − i ) z − k ] = ∑ j = 0 m b m − j [ z − j F ( z ) ] \sum^n_{i=0} a_{n-i}\big[z^{-i}Y(z) + \sum^{i-1}_{k=0}y(k-i)z^{-k}\big] = \sum^{m}_{j=0} b_{m-j}\big[z^{-j}F(z)\big] i=0nani[ziY(z)+k=0i1y(ki)zk]=j=0mbmj[zjF(z)]
    [ ∑ i = 0 n a n − i z − i Y ( z ) ] + ∑ i = 0 n a n − i [ ∑ k = 0 i − 1 y ( k − i ) z − k ] = [ ∑ j = 0 m b m − j z − j ] F ( z ) \big[\sum^n_{i=0} a_{n-i}z^{-i}Y(z)\big] + \sum^n_{i=0} a_{n-i}\big[\sum^{i-1}_{k=0}y(k-i)z^{-k}\big] = \big[ \sum^{m}_{j=0} b_{m-j}z^{-j}\big]F(z) [i=0naniziY(z)]+i=0nani[k=0i1y(ki)zk]=[j=0mbmjzj]F(z)
    Y ( z ) = M ( z ) A ( z ) + B ( z ) A ( z ) F ( z ) = Y z i ( z ) + Y z s ( z ) Y(z) = \frac{M(z)}{A(z)}+\frac{B(z)}{A(z)}F(z) = Y_{zi}(z) + Y_{zs}(z) Y(z)=A(z)M(z)+A(z)B(z)F(z)=Yzi(z)+Yzs(z)

  • 系统函数:
    H ( z ) = Y z s ( z ) F ( z ) = B ( z ) A ( z ) H(z) = \frac{Y_{zs}(z)}{F(z)} = \frac{B(z)}{A(z)} H(z)=F(z)Yzs(z)=A(z)B(z)
    h ( k ) ⟷ H ( z ) h(k)\longleftrightarrow H(z) h(k)H(z)

  • 说明:前向差分方程的解法:

  1. 方法1:
    用左移性质:
    f ( k + m ) ↔ z m F ( z ) − ∑ k = 0 m − 1 f ( k ) z m − k f(k+m) \leftrightarrow z^m F(z) - \sum^{m-1}_{k=0} f(k)z^{m-k} f(k+m)zmF(z)k=0m1f(k)zmk
    初始条件: y ( 0 ) , y ( 1 ) , ⋯ y(0), y(1), \cdots y(0),y(1),

  2. 方法2:
    转变为后向差分方程,用右移性质求解
    初始条件: y ( − 1 ) , y ( − 2 ) , ⋯ y(-1), y(-2), \cdots y(1),y(2),

  • 若初始条件不适用,则用递推法由相应的差分方程递推得到需要的初始条件。

To TOP 至目录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值