Python多线程编程之线程子类化
基本思路
导入Threading模块下的Thread类,将其子类化成MyThread,实现可以传入或者返回参数,并能通过对run方法的改写 ,达到定制化线程对象的目的。
Threading模块简介
参考python3.8官方文档 threading
基本方法
MyThread主要代码
func,args,name对应函数方法,传入参数,方法名称,在run方法里改写或者调用相应的函数方法实现线程的运行,结果可以通过getResults方法得到。
import threading
from time import sleep, ctime
class MyThread(threading.Thread):
def __init__(self, func, args, name=''):
threading.Thread.__init__(self)
self.func = func
self.name = name
self.args = args
def getResults(self):
return self.res
def run(self, *args, **kwargs):
print("Starting",self.name,'at:',ctime())
self.res=self.func(*self.args)
print(self.name,'finished at :',ctime())
实例
对比单线程和多线程执行
∑
n
=
1
N
n
\sum_{n=1}^Nn
n=1∑Nn
n
!
n!
n!
斐波那契数(Fibonacci number)F(n)
所有代码
# -*- coding: utf-8 -*-
"""
Module: Thread test.
Created on 2020/07/17 by Author
"""
import time
from time import sleep, ctime
from myThread import MyThread
def fib(x):
sleep(0.005)
if x<2:return 1
return (fib(x-2)+fib(x-1))
def fac(x):
sleep(0.1)
if x<2:return 1
return (x*fac(x-1))
def sum(x):
sleep(0.1)
if x<2:return 1
return (x+sum(x-1))
funcs=[fib,fac,sum]
n=18
def main():
nfuncs=range(len(funcs))
STtime=time.time()
print("Using Single Thread\n")
for i in nfuncs:
print("starting",funcs[i].__name__,"at:",ctime())
print(funcs[i](n))
print(funcs[i].__name__,"finished at:",ctime())
midtime=time.time()
print("Using Multiple Threads\n")
threads=[]
for i in nfuncs:
t=MyThread(funcs[i],(n,),funcs[i].__name__)
threads.append(t)
for i in nfuncs:
threads[i].start()
for i in nfuncs:
threads[i].join()
print(threads[i].getResults())
MTtime=time.time()
print("all Done at:",ctime())
print(" runtime by Single Thread:",midtime-STtime,"\n","runtime by Multiple Threads:", MTtime-midtime)
if __name__ == '__main__':
main()
运行结果
单线程任务按顺序依次执行, 多线程运行时长决定于跑最慢的那个线程。