集合
集合关系:
- 若元素a属于集合A,记作 a∈A a ∈ A
- 若元素a不属于集合A,记作 a∉A a ∉ A
- 若集合A是集合B的子集,记作 A⊂B A ⊂ B
- 若集合A和集合B相等,记作A=B
- 若集合A是集合B的真子集,记作 A⫋B A ⫋ B
- 空集记作 ∅ ∅
- 若所有集合都是集合 I I 的子集,则称为全集或基本集,称 I I \ A 为A的余集或补集,记作 Ac A c ,及不属于集合A的所有元素的集合
集合运算:
- 集合A与集合B的并集记作 A⋃B A ⋃ B
- 集合A与集合B的交集记作 A⋂B A ⋂ B
- 集合A与集合B的差集记作 A A \ B B
- 交换律: A⋃B=B⋃A,A⋂B=B⋂A A ⋃ B = B ⋃ A , A ⋂ B = B ⋂ A
- 结合律: (A⋃B)⋃C=A⋃(B⋃C),(A⋂B)⋂C=A⋂(B⋂C) ( A ⋃ B ) ⋃ C = A ⋃ ( B ⋃ C ) , ( A ⋂ B ) ⋂ C = A ⋂ ( B ⋂ C )
- 分配律: (A⋃B)⋂C=(A⋂C)⋃(B⋂C),(A⋂B)⋃C=(A⋃C)⋂(B⋃C) ( A ⋃ B ) ⋂ C = ( A ⋂ C ) ⋃ ( B ⋂ C ) , ( A ⋂ B ) ⋃ C = ( A ⋃ C ) ⋂ ( B ⋃ C )
- 对偶律: (A⋃B)c=Ac⋂Bc,(A⋂B)c=Ac⋃Bc ( A ⋃ B ) c = A c ⋂ B c , ( A ⋂ B ) c = A c ⋃ B c
- 笛卡尔积/直积: A×B={(x,y)|x∈A且y∈B} A × B = { ( x , y ) | x ∈ A 且 y ∈ B }
- 区间和邻域:
- 开区间记作(a,b);闭区间记作[a,b];半开半闭区间记作[a,b)或(a,b]
- 以上区间都称为有限区间,b-a称为这些区间的长度
- 引入 +∞或−∞ + ∞ 或 − ∞ 表示无限区间
- 邻域表示以点a为中心的任何开区间称为点a的邻域,记作 U(a) U ( a )
- 设 δ δ 是任一正数,则开区间 (a−δ,a+δ) ( a − δ , a + δ ) 就是点a的一个邻域,这个邻域称为点a的 δ δ 邻域,记作 U(a,δ) U ( a , δ ) ,即 U(a,δ)={x|a−δ<x<a+δ} U ( a , δ ) = { x | a − δ < x < a + δ } 。点a称为这邻域的中心, δ δ 称为这邻域的半径
- 点a的 δ δ 邻域去掉中心a后,称为点a的去心 δ δ 邻域,记作 U˚(a,δ) U ˚ ( a , δ ) ,即 U˚(a,δ)={x|0<|x−1|<δ} U ˚ ( a , δ ) = { x | 0 < | x − 1 | < δ } ;把开区间 (a−δ,a) ( a − δ , a ) 称为a的左 δ δ 邻域, (a,a+δ) ( a , a + δ ) 称为a的右 δ δ 邻域
- 两个闭区间的直积表示 xOy x O y 平面上的矩形区域
映射
- 映射概念:
- 设 X、Y X 、 Y 是两个非空集合,如果存在一个法则 f f ,使得对中每个元素 x x ,按法则,在 Y Y 中有唯一确定的元素与之对应,则称 f f 为从到 Y Y 的映射,记作
- y y 称为元素(在映射 f f 下)的像,并记作,即 y=f(x) y = f ( x )
- 元素 x x 称为元素(在映射 f f 下)的一个原像
- 集合X称为映射的定义域,记作 Df D f ,即 Df=X D f = X
- X X 中所有元素的像所组成的集合称为映射的值域,记作 Rf或f(X) R f 或 f ( X ) ,即 Rf=f(X)={f(x)|x∈X} R f = f ( X ) = { f ( x ) | x ∈ X }
- 若 Y Y 中任一元素都是 X X 中某元素的像,则称为 X X 到上的映射或满射
- 若对 X X 中任意两个不同元素,它们的像 f(x1)≠f(x2) f ( x 1 ) ≠ f ( x 2 ) ,则称 f f 为到 Y Y 的单射
- 若映射既是单射,又是满射,则称 f f 为一一映射(或双射)
- 映射又称为算子
- 逆映射和符合映射
- 对每个,规定
g(y)=x
g
(
y
)
=
x
,这
x
x
满足。这个映射
g
g
称为的逆映射,记作
f(−1)
f
(
−
1
)
,其定义域
Df−1=Rf
D
f
−
1
=
R
f
,值域
Df−1=X
D
f
−
1
=
X
- 只有单射才存在逆映射
- 设有两个映射 g:X→Y1,f:Y2→Z g : X → Y 1 , f : Y 2 → Z ,其中 Y1⊂Y2 Y 1 ⊂ Y 2 。则由映射 g g 和可以定出一个从 X X 到的对应法则,它将每个 x∈X x ∈ X 映射称 f[g(x)]⊂Z f [ g ( x ) ] ⊂ Z 。这个从 X X 到的映射称为映射 g g 和构成的复合映射,记作 f∘g f ∘ g ,即 f∘g:X→Z f ∘ g : X → Z , (f∘g)(x)=f[g(x)],x∈X ( f ∘ g ) ( x ) = f [ g ( x ) ] , x ∈ X
- 对每个,规定
g(y)=x
g
(
y
)
=
x
,这
x
x
满足。这个映射
g
g
称为的逆映射,记作
f(−1)
f
(
−
1
)
,其定义域
Df−1=Rf
D
f
−
1
=
R
f
,值域
Df−1=X
D
f
−
1
=
X
函数
- 函数概念
- 设数集 D⊂R D ⊂ R ,则称映射 f:D→R f : D → R 为定义在D上的函数,通常简记为 y=f(x),x∈D y = f ( x ) , x ∈ D ,其中x称为自变量,y称为因变量,D称为定义域,记作 Df D f ,即 Df=D D f = D ;函数值 f(x) f ( x ) 的全体所构成的集合称为函数 f f 的值域,记作或 f(D) f ( D ) ,即 Rf=f(D)={y|y=f(x),x∈D} R f = f ( D ) = { y | y = f ( x ) , x ∈ D }
- 函数是从实数集到实数集的映射,其值域总在R内,因此构成函数的要素是:定义域 Df D f 及对应法则 f f
- 使得算式有意义的一切实数组成的集合称为函数的自然定义域
- 对每个,总有唯一确定的实数值 y y 与之对应,那么这就确定了一个函数,这样得到的函数为多值函数的单值分支
- 函数的几种特性
- 函数的有界性:对任一,如都存在 f(x)≤K1 f ( x ) ≤ K 1 ,则称函数 f(x) f ( x ) 在 X X 上有上界;如都存在,则称函数 f(x) f ( x ) 在 X X 上有下界;如都存在,则称函数 f(x) f ( x ) 在 X X 上有界;如不存在这样的,则称函数 f(x) f ( x ) 在 X X 上无界
- 函数的单调性:对于区间上任意两点 x1,x2 x 1 , x 2 ,当 x1<x2 x 1 < x 2 时,若恒有 f(x1)<f(x2) f ( x 1 ) < f ( x 2 ) ,则称函数 f(x) f ( x ) 在区间 I I 上是单调增加的;若恒有,则称函数 f(x) f ( x ) 在区间 I I 上是单调减少的;单调增加和单调减少的函数统称为单调函数
- 函数的奇偶性:若函数在定义域上关于轴对称,即 f(x)=f(−x) f ( x ) = f ( − x ) ,则称函数为偶函数;若函数在定义域上关于远点对称,即 f(−x)=−f(x) f ( − x ) = − f ( x ) ,则称函数为奇函数;
- 函数的周期性:若存在一个正数 l l ,使得对于任一有 (x±l)∈D ( x ± l ) ∈ D ,且 f(x+l)=f(x) f ( x + l ) = f ( x ) 恒成立,则称 f(x) f ( x ) 为周期函数, l l 称为的周期,通常所说的周期是指最小正周期
- 反函数:设函数
f:D→f(D)
f
:
D
→
f
(
D
)
是单射,则它存在逆映射
f−1:f(D)→D
f
−
1
:
f
(
D
)
→
D
,称此映射
f−1
f
−
1
为函数
f
f
的反函数
- 相对于反函数来说,原函数 y=f(x) y = f ( x ) 称为直接函数
- 复合函数:设函数
y=f(u)
y
=
f
(
u
)
的定义域为
Df
D
f
,函数
u=g(x)
u
=
g
(
x
)
的定义域为
Dg
D
g
,且其值域
Rg⊂Df
R
g
⊂
D
f
,则由下式确定的函数
y=f[g(x)],x∈Dg
y
=
f
[
g
(
x
)
]
,
x
∈
D
g
称为由函数
u=g(x)
u
=
g
(
x
)
与函数
y=f(u)
y
=
f
(
u
)
构成的复合函数,它的定义域为
Dg
D
g
,变量
u
u
称为中间变量
- 构成复合函数的条件:函数的值域 Rg R g 必须含在函数 f f 的定义域内,否则不能构成复合函数
- 函数的运算:
- 和(差): f±g f ± g : (f±g)(x)=f(x)±g(x),x∈D ( f ± g ) ( x ) = f ( x ) ± g ( x ) , x ∈ D
- 积 (f⋅g)(x) ( f ⋅ g ) ( x ) : f(x)⋅g(x),x∈D f ( x ) ⋅ g ( x ) , x ∈ D
- 商 fg f g : (fg)(x)=f(x)g(x),x∈D ( f g ) ( x ) = f ( x ) g ( x ) , x ∈ D \ {x|g(x)=0,x∈D} { x | g ( x ) = 0 , x ∈ D }
- 初等函数:
- 幂函数: y=xμ(μ∈R是常数) y = x μ ( μ ∈ R 是 常 数 )
- 指数函数: y=ax(a>0且a≠1) y = a x ( a > 0 且 a ≠ 1 )
- 对数函数: y=logax(a>0且a≠1,特别当a=e时,记为y=lnx) y = log a x ( a > 0 且 a ≠ 1 , 特 别 当 a = e 时 , 记 为 y = ln x )
- 三角函数:如 y=sinx,y=cosx等 y = sin x , y = cos x 等
- 反三角函数:如 y=arcsinx,y=arccosx等 y = arcsin x , y = arccos x 等
- 以上五中基本初等函数经过和常数有限次的四则运算和有限次的函数复合步骤所构成并可用一个式子表示的函数,称为初等函数