【解析】BoTNet:Bottleneck Transformers for Visual Recognition

本文介绍了BoTNet,一种基于ResNet的视觉Transformer架构,它通过替换3×3卷积层为Multi-Head Self-Attention模块,保持其他设计不变,提升视觉Transformer性能。相比于ViT和DeiT,BoTNet在保持高效的同时可能带来更佳的图像识别表现。

在这里插入图片描述

论文:https://arxiv.org/abs/2101.11605
代码:https://github.com/mlpc-ucsd/CoaT

本文将介绍的是视觉Transformer的新backbone,之前有代表性的Transformer主干网络有:
ViT:用Transformer完全替代CNN
媲美CNN!Facebook提出DeiT:高效图像Transformer,在ImageNet上达84.4%准确率!

现在有非常多的工作就是基于ViT魔改,Amusi 觉得本文分享的BoTNet 应该能助燃视觉Transformer 这把火!

通过仅在ResNet中,用Multi-Head Self-Attention (MHSA)来替换3 × 3 convolution,并且不进行其他任何更改(如图1所示)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ViatorSun

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值