Flink vs. Spark Streaming: 实时数据流计算引擎对比

93 篇文章 9 订阅 ¥59.90 ¥99.00
本文对比了Flink和Spark Streaming在实时数据处理中的特点、架构和使用方法。Flink以事件驱动、低延迟和Exactly-Once语义著称,适合高实时性场景;而Spark Streaming采用微批处理,基于RDD,适合与Spark批处理集成。选择引擎应根据具体需求和技术栈来决定。
摘要由CSDN通过智能技术生成

Flink vs. Spark Streaming: 实时数据流计算引擎对比

随着大数据技术的快速发展,实时数据处理变得越来越重要。Flink和Spark Streaming是两个备受关注的实时数据流计算引擎。本文将详细比较Flink和Spark Streaming的特点、架构和使用方法,并提供相应的源代码示例。

  1. 特点比较

Flink和Spark Streaming都是用于实时数据处理的开源引擎,但它们在一些方面有所不同。

Flink的特点:

  • 事件驱动:Flink以事件为基本单位进行数据处理,支持事件时间和处理时间。
  • 状态管理:Flink提供了强大的状态管理机制,可以处理有状态的计算任务。
  • Exactly-Once语义:Flink支持Exactly-Once语义,确保数据处理的准确性。
  • 低延迟:Flink具有低延迟的特性,适用于对实时性要求较高的应用场景。

Spark Streaming的特点:

  • 微批处理:Spark Streaming采用微批处理模型,将实时数据流切分成一系列小批次进行处理。
  • 基于RDD:Spark Streaming建立在Spark的RDD(弹性分布式数据集)之上,可以与Spark的批处理无缝集成。
  • 扩展性:Spark Stream
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值