点乘和叉乘的区别

点乘又叫向量的内积,叉乘又叫向量的外积。
点乘计算得到的结果是一个标量;
A·B=|A||B|cosW(A、B上有向量标,不便打出。W为两向量角度)。
叉乘得到的结果是一个垂直于原向量构成平面的向量。
|A×B|=|A||B|sinW
内积与外积的坐标表示:
假设向量A坐标为(x,y,z),向量B坐标为(m,n,p),另外在坐标系里向量A、向量B可以表示为(a1i,a2j,a3k)和(b1i,b2j,b3k),其中i、j、k分别是x轴,Y轴,Z轴正方向上的单位向量。
则A·B=xm+yn+zp=a1b1+a2b2+a3b3,
假设向量C为向量A和xlB的叉乘之积,则有
向量c=向量a×向量b= 
|i      j    k | 
|a1 a2 a3| 
|b1 b2 b3| 
=(a2b3-a3b2,a3b1-a1b3,a1b2-a2b1),(上式是行列式,线性代数里面会讲到)
另外,在平面中:
设A=(a,b),B=(c,d),
A、B叉乘的模,AXB|=sqrt(a^2+b^2)*sqrt(c^2+d^2)*sin<A,B>,大小就是为A,B构成临边的平行四边形的面积。方向为右手系中垂直于A,B所在平面。
对于sin<A,B>,
sinA=b/sqrt(a^2+b^2),
sinB=d/sqrt(c^2+d^2),
cosA=a/sqrt(a^2+b^2),
cosB=c/sqrt(c^2+d^2),
那么sin<A,B>为sin(A-B)或者sin(B-A)中的正值。
sin(A-B)=sinA*cosB-cosA*sinB,sin(B-A)=sinB*cosA-cosB*sinA.无论使用哪一个都可以
然后sin<A,B>=|sin(A-B)|=|sin(B-A)|
注:其中sqrt为开根号。
相关推荐
©️2020 CSDN 皮肤主题: 博客之星2020 设计师:CY__ 返回首页