机器学习对风险管理的重要性 近年来,机器学习 (ML) 已成为一系列金融服务中的重要组成部分,从资产管理、算法交易和智能咨询到信用评估、贷款决策和欺诈检测。机器学习非常适合分析交易、搜索阿尔法信号以及利用投资和银行业产生的大量数据评估行为模式。随着机器学习工具和技术越来越受欢迎,许多公司正在将机器学习功能整合到他们的业务、交易和风险管理流程中。
量化金融中的机器学习是什么? 定义、类型和示例 机器学习是什么 机器学习是更广泛的人工智能领域的一个分支,它利用统计模型来进行预测。它通常被描述为预测建模或预测分析的一种形式,传统上,它被定义为计算机在没有明确编程的情况下学习的能力。
如何成为量化金融开发者 量化开发人员,有时也称为量化软件工程师,专注于开发、实现和维护量化模型。他们倾向于与研究量化策略分析师合作,与投资银行、对冲基金和其他金融公司的技术方面的软件工程师合作。量化开发人员是熟练的程序员,精通Python、C、C++、C#或Java等语言。他们也可以使用数学和统计软件包,如MATLAB、R或SAS。量化开发人员的工作包括开发和维护编程库,创建数值库组件,这些库的性能调优,以及提供高性能计算、优化策略提供解决方案。
比尔·盖茨最新AI演讲:人工智能时代已经开启 从技术上讲,人工智能一词指的是创建用于解决特定问题或提供特定服务的模型。像ChatGPT这样的技术就是人工智能,它正在学习如何更好地进行聊天,但不能学习其他任务。相比之下,人工通用智能是指能够学习任何任务或主题的软件。目前,人工通用智能还不存在——计算机行业正在进行激烈的辩论,关于如何创建人工通用智能,以及是否可以创建它。开发人工智能和人工通用智能一直是计算机行业的伟大梦想。几十年来,问题一直是计算机何时会在除了计算之外的某些方面比人类更出色。
什么是金融工程 金融工程是投资行业的一个跨学科分支,利用应用数学、统计学、计算机科学、金融理论和经济学对金融市场进行定量分析。该领域侧重于开发模型和技术,以开发和测试投资策略,设想和创建新的金融产品,管理风险.
《编程的原则》读书笔记(四):七个设计原则 七个设计原理是我们设计代码结构时应考虑的核心观点,目的是避免代码中存在故障隐患。这些设计原理源于对实际软件开发现场的分析,是提高代码质量的经验结晶。同时七个设计原理是代码审查的判断标准。
ChatGPT研究(三)——AIGC多模态交互功能,奠定多场景商用基础 ChatGPT,想必大家已经是耳熟能详了,一度认为ChatGPT的到来是人工智能的奇点到来,那么到底ChatGPT是什么?为什么ChatGPT为代表的人工智能技术不仅受到平民用户的喜爱,还受资本青睐!
ChatGPT研究(二)——ChatGPT助力跨模态AI生成应用 ChatGPT是一种基于深度学习的语言模型,它可以用来解决自然语言处理(NLP)和机器翻译(MT)相关的问题。ChatGPT,想必大家已经是耳熟能详,那么到底ChatGPT是什么?为什么ChatGP最近会大火呢?那我们计划分三期来做ChatGPT多维度的研究。
ChatGPT研究(一)——AI平民化的里程碑 ChatGPT是一种基于深度学习的语言模型,它可以用来解决自然语言处理(NLP)和机器翻译(MT)相关的问题。ChatGPT,想必大家已经是耳熟能详,那么到底ChatGPT是什么?为什么ChatGP呢?那我们就来做ChatGPT多维度的研究
祝贺2022年1月CQF毕业生 CQF项目一年两期,2022年1月的学员最近毕业了。祝贺CQF的最新毕业生。这是第39批完成硕士级在线课程的学生。 CQF由CQF研究所颁发,由惠誉学习独家提供,是世界上最大的量化金融资格证书。
CQF量化金融职业指南 2022年5月,CQF协会发布了《CQF量化金融职业指南》手册,介绍了量化金融行业、职业岗位、工作内容等等,专为寻求量化金融行业现状、见解的人士而设计,一起来看看Quants的职业指南吧!
《编程的原则》读书笔记 (三): 软件架构的基本技法和非功能需求 软件架构的基本技法是写出优质代码的基本原理,软件工程中有10个基本技法来指导编写软件核心功能的代码,同时也有6个非功能需求观点来指导软件功能之外的功能。
《编程的原则》读书笔记 (三): 软件架构的基本技法和非功能需求 软件架构的基本技法是写出优质代码的基本原理,软件工程中有10个基本技法来指导编写软件核心功能的代码,同时也有6个非功能需求观点来指导软件功能之外的功能。
《编程的原则》读书笔记 (二): 编程理论的三个思想和六个实现原则 编程的理论是指导编程的思想,编程中,我们最重视编写出高质量的代码。编程有一套理论专门用来指导人们实现这种高质量的代码,该理论由三个思想作为支撑和六个原则将编程理论展示的思想应用于代码。