OpenCV 3.4.11 cv::dnn::Net::forward()函数第一个参数的理解

问题来源

使用OpenCV 3.4.11在C++下跑YOLOv4的时候对cv::dnn::Net::forward()函数的第一个参数产生了一些疑问,在此记录学习解惑的过程

代码来源:

网络模型训练自:https://github.com/AlexeyAB/darknet

使用dnn网络进行输入输出的代码:

// 文件路径
string imgPath = imgDir + "test1.jpg";
string cfgPath = netDir + "yolo-obj.cfg";
string wtPath = netDir + "yolo-obj_last.weights";

// 加载网络
Net net = dnn::readNetFromDarknet(cfgPath, wtPath);
net.setPreferableBackend(DNN_BACKEND_OPENCV);
net.setPreferableTarget(DNN_TARGET_CPU);

// 读取图片
Mat img = imread(imgPath);

// 创建 4D blob
Mat blob;
blobFromImage(img, blob, 1/255.0, cvSize(iw, ih), Scalar(0, 0, 0), true, false);

// 设置网络输入
net.setInput(blob);

// 运行 forward pass 获取输出层的输出
vector<Mat> outs;
net.forward(outs, getOutputsNames(net));

在这里,函数getOutputsNames()的输出为网络中的三个输出层名称(函数代码在文末)。
在这里插入图片描述
net.forward()函数根据输出层名称得到如下的输出结果:
在这里插入图片描述
观察可得,net.forward()的输出内容outs为一个Mat数组,每个Mat为6维度向量组(n行6列矩阵)

理解

官方文档:https://docs.opencv.org/3.4.11/

在这里插入图片描述
在上部分的调试信息中看到,outs数组的每一个元素都是一个6维向量,根据OpenCV官方文档的解释,该6维向量是每一个输出层的输出,形式为blob二进制对象,是根据不同的网络结构发生改变的数据结构

Sunita Nayak的文章中,找到了对YOLOv4网络结构下forward()函数输出的解释:
在这里插入图片描述
YOLOv4网络的输出为矩形框,每个矩形框由一个向量表示,所有矩形框组成一个向量组。每个向量的长度为类别数 + 5个参数,这五个参数的前四个分别是矩形框在图像上的位置center_x, center_y, width, height(均为比例,范围在0-1之间),第五个参数是该矩形框包含一个物体的置信度

从向量的第五个参数开始,分别表示矩形框中物体对应每个类别的置信度

在本文的例子中,自行训练的网络仅包含一个类,因此每个向量的长度为5+1=6。下面是一些数据例子:

center_xcenter_ywidthheightconfidence of containing a objectconfidence of class1
0.5032061338420.06070671603080.05540368333460.03702243790030.9564980864520.947924435139
0.269188106060.09221667796370.05775146931410.0344571284950.7977473735810.791282773018
0.0298348180950.007896039634940.04943570122120.02079393714670.0001708045310810.0

处理forward()函数输出outs的详细代码及注释见文末。


  1. getOutputsNames()函数代码
vector<String> getOutputsNames(Net &net)
{
    vector<String> names;
    if (names.empty())
    {
        // 获取输出层的索引号
        vector<int> outLayers = net.getUnconnectedOutLayers();

        // 获取网络中所有层的名称
        vector<String> layersNames = net.getLayerNames();

        // 将 cv::String 转为 std::string
        names.resize(outLayers.size());
        for (size_t i = 0; i < outLayers.size(); i++)
        {
            names[i] = layersNames[outLayers[i] - 1];
        }
    }
    return names;
}
  1. postprocess()函数
void postprocess(Mat& frame, const vector<Mat>& outs)
{
    vector<int> classIds;
    vector<float> confidences;
    vector<Rect> boxes;

    for (size_t i = 0; i < outs.size(); ++i)
    {
        // Scan through all the bounding boxes output from the network and keep only the
        // ones with high confidence scores. Assign the box's class label as the class
        // with the highest score for the box.
        /// 扫描所有的矩形框,在找出该矩形框中对应的置信度最高的类别
        /// 当该类别的置信度高于阈值时,保留并记录类别号
        float* data = (float*)outs[i].data;  // 强制转换成 float
        // 针对每一行进行处理
        for (int j = 0; j < outs[i].rows; ++j, data += outs[i].cols)
        {
            Mat scores = outs[i].row(j).colRange(5, outs[i].cols);  // 第i个Mat,第j行
            Point classIdPoint;
            double confidence;
            // Get the value and location of the maximum score
            /// 获取具有最高置信度的类别
            /// (const SparseMat &a, double *minVal, double *maxVal, int *minIdx, int *maxIdx)
            minMaxLoc(scores, 0, &confidence, 0, &classIdPoint);
            if (confidence > cfdThr)
            {
                /// data
                /// |centerX|centerY|width|height|confidence of containing object|confidence1|confidence2|...
                int centerX = (int)(data[0] * frame.cols);
                int centerY = (int)(data[1] * frame.rows);
                int width = (int)(data[2] * frame.cols);
                int height = (int)(data[3] * frame.rows);
                int left = centerX - width / 2;
                int top = centerY - height / 2;

                classIds.push_back(classIdPoint.x);
                confidences.push_back((float)confidence);
                boxes.push_back(Rect(left, top, width, height));
            }
        }
    }

    // Perform non maximum suppression to eliminate redundant overlapping boxes with
    // lower confidences
    vector<int> indices;
    NMSBoxes(boxes, confidences, cfdThr, nmsThr, indices);
    for (size_t i = 0; i < indices.size(); ++i)
    {
        int idx = indices[i];
        Rect box = boxes[idx];
        drawPred(classIds[idx], confidences[idx], box.x, box.y,
            box.x + box.width, box.y + box.height, frame);
    }
}


// Draw the predicted bounding box
void drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat& frame)
{
    //Draw a rectangle displaying the bounding box
    rectangle(frame, Point(left, top), Point(right, bottom), Scalar(255, 178, 50), 3);

    //Get the label for the class name and its confidence
    string label = format("%.2f", conf);
    if (!classes.empty())
    {
        CV_Assert(classId < (int)classes.size());
        label = classes[classId] + ":" + label;
    }

    //Display the label at the top of the bounding box
    int baseLine;
    Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
    top = max(top, labelSize.height);
    rectangle(frame, Point(left, top - round(1.5*labelSize.height)), Point(left + round(1.5*labelSize.width), top + baseLine), Scalar(255, 255, 255), FILLED);
    putText(frame, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0, 0, 0), 1);
}

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页