【算法训练】ALGO-2 最大最小公倍数

资源限制

时间限制:1.0s   内存限制:256.0MB

问题描述

已知一个正整数N,问从1~N中任选出三个数,他们的最小公倍数最大可以为多少。

输入格式

输入一个正整数N。

输出格式

输出一个整数,表示你找到的最小公倍数。

样例输入

9

样例输出

504

数据规模与约定

1 <= N <= 10^6。

分析(娜一笑最倾城)这个老师的分析很全面啊!!!转载这个老师的分析 ~

若n 和 n-1和n-2 三个数 两两互质的话,那么结果就是这三个数的积。

根据数论知识:任意大于1的两个相邻的自然数都是互质的。

我们可以知道,当n是奇数时,n 和n-2都是奇数,n-1是偶数,那么他们三个的公约数肯定不是2,而因为这三个数是连续的,所以大于2的数都不可能成为他们或其中任意两个数的公约数了。结果就是他们三个的乘积。

而当n为偶数时,n*(n-1)*(n-2)肯定不行了,因为n和n-2都是偶数,那么只能将n-2改成n-3,即n*(n-1)*(n-3),如果这三个数两两互质那么肯定就是结果了。

但是因为n和n-3相差3,所以当其中一个数能被3整除时,另一个肯定也可以。而当其中一个不可以时,另一个肯定也不可以.而因为n为偶数,n-3为奇数,所以2不可能成为他俩的公因子。对于大于3的数,肯定就都不可能成为这三个数或者其中任意两个数的公约数了。因此只需再对3进行判断:

如果n能整除3,那么,n*(n-1)*(n-3)就肯定不行了,因为n和n-3有了公约数3,结果肯定小了,那么就只能继续判下一个即n*(n-1)*(n-4)而这样n-4又是偶数,不行继续下一个n*(n-1)*(n-5) = n^3 -6*n^2 + 5*n 而如果这个可以 那个其值肯定要小于(n-1)*(n-2)*(n-3) = n^3 -6*n^2+11n-6(对于n>1来说都成立),而(n-1)*(n-2)*(n-3)由上一个奇数结论可知是一个符合要求的,因此到n-5就不用判断了。直接选答案为(n-1)*(n-2)*(n-3);

而n不能整除3,那么结果就是n*(n-1)*(n-3),因为n和n-3都不能整除3,此时n-1能不能整除3都无关紧要了,而对于其它数都是不可能的。上面已证。

 代码

#include<iostream>
using namespace std;
int main(){
	long long int n,minb=1;
	cin>>n;
	if(n<3){
		for(int i=2;i<n;i++)
			minb*=i;
		printf("%d",minb);
		return 0;
	}
	if(n%2==1) printf("%lld",n*(n-1)*(n-2));//n为奇数 
	else{	//n为偶数 
		if(n%3==0)	printf("%lld",(n-1)*(n-2)*(n-3));
		else printf("%lld",n*(n-1)*(n-3));
	}
	return 0;	
} 

还要注意使用long long,因为10^6很大,如果用的是int会没分~

这题挺好的!!!

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页