gym/Gymnasium强化学习玩推箱子游戏

gym/Gymnasium强化学习玩推箱子游戏

在这里插入图片描述

gym 框架

源码 https://github.com/openai/gym
文档 https://www.gymlibrary.dev/

自 2021 年以来一直维护 Gym 的团队已将所有未来的开发转移到 Gymnasium,这是 Gym 的替代品(将 gymnasium 导入为 gym),Gym 将不会收到任何未来的更新。请尽快切换到 Gymnasium

Gymnasium 框架

源码 https://github.com/Farama-Foundation/Gymnasium
文档 https://gymnasium.farama.org/

推箱子环境

源码 https://github.com/mpSchrader/gym-sokoban

我用的环境是:

$ python --version
  Python 3.7.16

$ python -m pip list 

Package            Version
------------------ ---------
certifi            2022.12.7
charset-normalizer 3.3.2
cloudpickle        2.2.1

gym                0.26.2
gym-notices        0.0.8
gym-sokoban        0.0.6

idna               3.7
imageio            2.31.2
importlib-metadata 6.7.0
numpy              1.21.6
Pillow             9.5.0
pip                22.3.1
pygame             2.6.0
requests           2.31.0
setuptools         65.6.3
tqdm               4.66.5
typing_extensions  4.7.1
urllib3            2.0.7
wheel              0.37.1
zipp               3.15.0

安装

我用的是 Python 3.7.16

conda create -p ./venv python=3.7
conda activate ./venv 

直接 pip :

python -m pip install gym-sokoban

或者源码安装

git clone git@github.com:mpSchrader/gym-sokoban.git
cd gym-sokoban
python -m pip install -e .

然后跑代码测试

test.py

import gym
import gym_sokoban

env = gym.make('Sokoban-v2')

# 初始化环境
observation = env.reset()

for t in range(10000):

    env.render(mode='human')

    action = env.action_space.sample()
    observation, reward, done, info = env.step(action)

    print(f"Step {t}: Action={action}, Reward={reward}, Done={done}, Info={info}")

    if done:
        observation = env.reset()

env.close()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值