阿里达摩院:FunASR语音识别

阿里达摩院:FunASR语音识别

github:
https://github.com/modelscope/FunASR/

1 clone 代码到本地,切换到 FunASR/

git clone https://github.com/alibaba/FunASR.git && cd FunASR

2 虚拟环境

conda create -p ./venv python=3.12
conda activate ./venv

1 安装依赖

pip install torch
pip install torchaudio

2 安装 funasr

pip install -U funasr

或者

pip install -e ./

3 安装其它模块

pip install -U modelscope huggingface_hub

测试

1 下载模型
modelscope download --model iic/SenseVoiceSmall  --local_dir ./SenseVoiceSmall
modelscope download --model iic/speech_fsmn_vad_zh-cn-16k-common-pytorch  --local_dir ./speech_fsmn_vad_zh-cn-16k-common-pytorch
2 代码测试

在 FunASR/ 目录下创建 wmx_test 文件夹
FunASR/wmx_test/test.py :

from funasr import AutoModel
from funasr.utils.postprocess_utils import rich_transcription_postprocess

# model_dir = "iic/SenseVoiceSmall"
model_dir = "./SenseVoiceSmall"
vad_model_dir = "./speech_fsmn_vad_zh-cn-16k-common-pytorch"

# input_path="/media/wmx/soft1/AI-model/FunASR/asr_example_en.wav"
input_path="/media/wmx/soft1/AI-model/FunASR/vad_example.wav"

model = AutoModel(
    model=model_dir,
    # vad_model="fsmn-vad",
    vad_model=vad_model_dir,
    vad_kwargs={"max_single_segment_time": 30000},
    # device="cuda:0",
    device="cpu",
    disable_update=True
)

# en
res = model.generate(
    input=input_path,
    cache={},
    language="auto",  # "zn", "en", "yue", "ja", "ko", "nospeech"
    use_itn=True,
    batch_size_s=60,
    merge_vad=True,  #
    merge_length_s=15,
)
text = rich_transcription_postprocess(res[0]["text"])
print(text)

识别输出 :

试错的过程很简单而,且特别是今天报名仓雪卡的同学,你们可以。听到后面的有专门的活动课,他会大大降低你的试绸成本。其实你也可以过来听课,为什么你自己写嘛?我先今天写5个点,我就试试试验一下,反正这5个点不行,我再写5个点,这试再不行,那再写5个点嘛。你总会所谓的活动搭神和所谓的高手,都是只有一个把所有的错,所有的坑全部趟一遍,留下正确的你就是所谓的搭神。明白吗?所以说关于活动通过这块,我只送给你们四个字啊,换位思考。如果说你要想降低你的试错成本,今天来这里你们就是对的。因为有畅畅血卡这个机会,所以说关于活动过于不过这个问题,或者活动很难通过这个话题呃,如果真的要坐下来聊的话,要聊一天。但是我觉得我刚才说的四个字足够。好,谢谢。好,非常感谢那个三茂老师的回答啊。三茂老师说,我们在整个店铺的这个活动当中,我们要学会换位思考。其实

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值