20230111 Multiscale Simulations of Complex Systems by Learning their Effective Dynamics

文章提出了一种结合大规模模拟和低阶模型的新方法,称为LED,用于有效模拟复杂系统。通过高维到低维状态的转换,使用RNN跟踪和预测低阶状态,以处理非马尔可夫动态。实验在FitzHugh-Nagumo方程等复杂系统上展示了有效性,表明LED能在保持准确性的同时提供速度提升。
摘要由CSDN通过智能技术生成

Multiscale Simulations of Complex Systems by Learning their Effective Dynamics

通过学习复杂系统的有效动力学进行多尺度模拟

Motivation

解析所有时空尺度来大规模预测-计算资源要求高

低阶模型-快 但是 效果不那么好

提出将大规模模拟和低阶模型结合起来,以学习各种复杂系统的有效动力学(LED)

Model

高维状态与低维状态,高维:细粒度的系统结构;低维:粗粒度的状态

第一阶段Twarm:高维状态作为输入,同时根据方程来进行系统演变,演变过程中不断把每个时间步的高维状态通过encoder降维输入给RNN

经过一小段时间后,进入第二阶段,记录了历史状态的的RNN开始独立模拟dynamics,之后再将通过解码器恢复系统的高维状态,之后就是不断的交替重复

低阶与高阶信息的转换:AE(Lift & Restrict 降维到latentspace)(Restrict 降维到latent space)

RNN作用有两个:1跟踪低阶状态的历史以对非马尔可夫动态进行建模,2预测在下一个时间步长Zt+∆t处的潜在状态

decoder采用了混合密度网络,混合密度网络通常作为神经网络的最后处理部分。将某种分布(通常是高斯分布)按照一定的权重进行叠加,从而拟合最终的分布。

概念的区分

LED,训练数据来源于高维信息

LatentLED,训练的基础上在低阶状态上进行模拟预测

Multi-交替重复

Results

在不同的复杂系统上做了大量实验,也包括不同的模型组合,比如AE+RNN可以替换为AE+LSTM

FitzHugh-Nagumo方程,FHN方程是有非线性反应项的一类扩散方程,是生物神经中电流传输分析的重要数学模型。

A:不同模型在第一阶段的表现,识别合理的降维latent space维度,评价指标为均方误差MSE;dz=2之后,MSE趋于稳定,所以选取dz=2的AE(使用到的模型:主成分分析技术,又称主分量分析技术,旨在利用降维的思想,把多指标转化为少数几个综合指标;convolutional autoencoder:AE的全连接层换成卷积)

B:预测第二阶段在latent space动态演变的效果,Tf是预测的总的时间步长,平均归一化绝对差MAND作为评价指标;LSTM-end2end和RC显示出最低的测试误差,而RC的方差更大。所以选取LSTM-end2end。(端到端训练简单的理解就是不要预处理和特征提取,直接把原始数据扔进去得到最终结果,就是给模型更多自我调整的能力)

C:CSPDF与LED比较

ABC都没有使用Multiscale

D、E:Latent-LED与Multiscale-LED在不同的multiscale ratio ρ(两个阶段的时间之比)下error与speed上的比较,Multiscale-LED:the approximation error of LED decreases, at the cost of reduced speed-up,与Latent-LED相比,MNAD从约0.019降低到约0.003。然而,speed-up从60降低到2

F G H I其实都是在证明latentspace的预测效果

GHI:抑制剂密度中的Latent-LED预测与groundtruth进行了比较

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值