树状数组学习资料

原文地址:树状数组学习资料 作者:依然

    首先我们得知道一个问题,那就是线段树得作用并不只是用来存储线段的,也可以存储点的值等等。对于静态的线段树,空间上需要的数组有:当前结点的数据值,左儿子编号,右儿子编号,至少这么三个数组。而在时间上虽然是NlogN的复杂度,但是系数很大。实现起来的时候编程复杂度大,空间复杂度大,时间效率也不是很理想。针对于这些缺点,树状数组便有了自己的优势。

 

    下面从一个例题开始:

    题目大意:

    数列操作。给定一个初始值都为0的序列,动态地修改一些位置上的数字,加上一个数,减去一个数,或者乘上一个数,然后动态地提出问题,问题的形式是求出一段区间数字的和。

 

    1.用线段树可以这样解:

    若要维护的序列范围是0..5,先构造下面的一棵线段树:

    [转载]树状数组学习资料

    可以看出,这棵树的构造用二分便可以实现,复杂度是2*N。

    修改一个位置上数字的值,就是修改一个叶子结点的值,而当程序由叶子结点返回根节点的同时顺便修改掉路径上的结点的a数组的值。对于询问的回答,可以直接查找i..j范围内的值,遇到分叉时就兵分两路,最后在合起来。也可以先找出0..i-1的值和0..j的值,两个值减一减就行了。后者的实际操作次数比前者小一些。 

    这样修改与维护的复杂度是logN。询问的复杂度也是logN,对于M次询问,复杂度是MlogN。

    ->缺点:线段树的编程复杂度大,空间复杂度大,时间效率也不高。

 

    2.树状数组的介绍。

    树状数组是一个查询和修改复杂度都为log(n)的数据结构,可以很高效的进行区间统计。在思想上类似于线段树,比线段树节省空间,编程复杂度比线段树低,但适用范围比线段树小。

    来观察这个图[数组下标是从1开始]:

[转载]树状数组学习资料

 

  令这棵树的结点编号为C1,C2...Cn。令每个结点的值为这棵树的值的总和,那么容易发现:

  C1 = A1

  C2 = A1 + A2

  C3 = A3

  C4 = A1 + A2 + A3 + A4

  C5 = A5

  C6 = A5 + A6

  C7 = A7

  C8 = A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8
    ...

  C16 = A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8 + A9 + A10 + A11 + A12 + A13 + A14 + A15 + A16

   

    这里有一个有趣的性质:

[转载]树状数组学习资料

  设节点编号为x,那么这个节点管辖的区间为2^k(其中k为x二进制末尾0的个数)个元素。因为这个区间最后一个元素必然为Ax。(管辖区间就是记录的区间个数,1,3,5,7,9为1。2,6为2。4为4。8为8。)

  所以很明显:Cn = A[n – 2^k + 1] + ... + A[n]

  算这个2^k有一个快捷的办法,定义一个函数如下即可:

  int lowbit(int x){

      return x & (x^(x–1));

  }

 

  想要查询一个SUM(n),可以依据如下算法即可(求a[0]~a[n]的和):

  step1: 令sum = 0,转第二步;

  step2: 假如n <= 0,算法结束,返回sum值,否则sum = sum + Cn,转第三步;

  step3: n = n – lowbit(n),转第二步。

  可以看出,这个算法就是将这一个个区间的和全部加起来,为什么是效率是log(n)的呢?以下给出证明:

  n = n – lowbit(n)这一步实际上等价于将n的二进制的最后一个1减去。而n的二进制里最多有log(n)个1,所以查询效率是log(n)的。

    int sum(int i){
        int ans = 0;
        while(i > 0){
            ans += ar[i];
            i -= lowbit(i);
        }
        return ans;
    }

 

  那么修改UPDATE()呢,修改一个节点,必须修改其所有祖先,最坏情况下为修改第一个元素,最多有log(n)的祖先。

  所以修改算法如下(给某个结点i加上x):

  step1: 当i > n时,算法结束,否则转第二步;

  step2: Ci = Ci + x, i = i + lowbit(i)转第一步。

  i = i +lowbit(i)这个过程实际上也只是一个把末尾1补为0的过程。

    void add(int i, int w){
        while(i <= n){
            ar[i] += w;
            i += lowbit(i);
        }
    }

 

    扩展:二维树状数组(要学会运用)。

              对ar[1][1]增加的效果:

[转载]树状数组学习资料

 

    void add(int i, int j, int w){
        int tmpj;
        while(i <= row){
            tmpj = j;
            while(tmpj <= col){
                ar[i][tmpj] += w;
                tmpj += lowbit(tmpj);
            }
            i += lowbit(i);
        }
    }

    int sum(int i, int j){
        int tmpj, ans = 0;
        while(i > 0){
            tmpj = j;
            while(tmpj > 0){
                ans += ar[i][tmpj];
                tmpj -= lowbit(tmpj);
            }
            i -= lowbit(i);
        }
        return ans;
    }

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值