纶巾
码龄6年
关注
提问 私信
  • 博客:94,796
    94,796
    总访问量
  • 26
    原创
  • 2,130,114
    排名
  • 8
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 加入CSDN时间: 2018-07-12
博客简介:

WWWWWWGJ的博客

查看详细资料
个人成就
  • 获得30次点赞
  • 内容获得8次评论
  • 获得109次收藏
创作历程
  • 26篇
    2019年
  • 3篇
    2018年
成就勋章
TA的专栏
  • python
    2篇
  • Machine Learning
    4篇
  • keras
    4篇
  • OpenCV
    1篇
  • tensorflow
    14篇
  • sklearn
    2篇
  • pytorch
    2篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

186人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

markdown笔记

文章目录加粗、斜体分割线引用标题:Setext方式Atx方式列表无序列表有序列表超链接文字超链: Inline方式图片超链索引超链:reference方式自动链接代码段落代码注释转义字符 \换行表格段落缩进(空格)字体、字号、颜色公式注脚加粗、斜体星号或下划线,单个斜体,双粗体,符号可跨行,可加空格**你好**: 你好_没错_: 没错分割线三个或更多 -_*,单独一行,可含空格...
原创
发布博客 2019.12.26 ·
310 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

将数据集 标签 转化为 整型

# 假设字符串型的标签存放在img_label这个list中label_set = set(img_label) # 将img_label转化成集合的形式,集合中不会有重复的元素img_label_ = sorted(list((label_set))) # 这里再把集合转化成list,# 这里原始标签对应于哪一个整数并不重要# 但是依然要排序,否则每次生成的img_la...
原创
发布博客 2019.04.18 ·
933 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

python读取pkl格式文件

def load_cache(path, encoding="latin-1", fix_imports=True): with open(path, "rb") as f: return pickle.load(f, encoding=encoding, fix_imports=True)# 这里encoding是编码格式,要根据具体的pkl文件来选择...
原创
发布博客 2019.04.18 ·
2637 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

pytorch dataloader 自定义数据读取,resnet-50在boxcars数据集上

boxcars数据集放在pkl文件中,首先需要读取 .pkl文件,定义一个读取函数。import pickledef load_cache(path, encoding="latin-1", fix_imports=True): """ encoding latin-1 is default for Python2 compatibility """ wi...
原创
发布博客 2019.04.18 ·
1654 阅读 ·
0 点赞 ·
3 评论 ·
1 收藏

自己写dataloader,pytorch数据集读取,resnet50在standford cars数据集上

作者用resnet50跑了一下standford cars数据集。该数据集共有196类,16185张图片,其中训练集有8144张,测试集有8041张图片。训练集是这样的: train/00001.jpg train/00002.jpg ……对应的标签放在另一个mat文件中。读取mat文件的代码如下,将其写进txt文件,一行只有一...
原创
发布博客 2019.03.26 ·
3596 阅读 ·
4 点赞 ·
3 评论 ·
19 收藏

对数几率回归(logistic regression)逻辑回归

对于二分类任务,最理想的是用“单位阶跃函数”(unit-step function)需要将线性回归模型产生的预测值 转换为0/1值。但是单位阶跃函数不连续,于是用对数几率函数 (logistic function) 作为替代函数: 对数几率函数是一种“sigmoid”函数。它将z值转化为一个接近0或1的 值,并且其输出值在  附近变化很陡。将 代入    ,得到   ...
原创
发布博客 2019.02.27 ·
976 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

tensorflow实现线性回归 (linear regression)

 定义一个线性回归模型:linear_regression_model.pyimport tensorflow as tfimport numpy as npclass linearRegressionModel: def __init__(self,x_dimen): self.x_dimen = x_dimen self._index_in...
原创
发布博客 2019.02.24 ·
510 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

sklearn.metrics.r2_score

r2_score函数是计算 (决定系数coefficient of determination)的。决定系数,有的翻译为判定系数,也称为拟合优度。是相关系数的平方。表示可根据自变量的变异来解释因变量的变异部分。如某学生在某智力量表上所得的 IQ 分与其学业成绩的相关系数 r=0.66,则决定系数 =0.4356,即该生学业成绩约有 44%可由该智力量表所测的智力部分来说明或决定。r2_...
原创
发布博客 2019.02.24 ·
3945 阅读 ·
3 点赞 ·
0 评论 ·
7 收藏

sklearn.datasets.make_regression

sklearn.datasets.make_regression( n_samples=100, n_features=100, n_informative=10, n_targets=1, bias=0.0, effective_rank=None, tail_strength=0.5, noise=0.0, ...
翻译
发布博客 2019.02.24 ·
4342 阅读 ·
1 点赞 ·
0 评论 ·
9 收藏

矩阵求导公式(利用矩阵微分和迹技巧)

可以运用以下公式:
原创
发布博客 2019.02.21 ·
2391 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

tf.Variable

__init__( initial_value=None, trainable=True, collections=None, validate_shape=True, caching_device=None, name=None, variable_def=None, dtype=None, expected_shape=...
原创
发布博客 2019.02.21 ·
187 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

tf.squared_difference

squared_difference( x, y, name=None)计算张量 x、y 对应元素差的平方参数名 必选 类型 说明 x 是 张量 是 half, float32, float64, int32, int64, complex64, complex128 其中一种类型 y 是 张量 是 ...
原创
发布博客 2019.02.21 ·
1524 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

tf.reduce_mean

reduce_mean( input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)计算张量 input_tensor 平均值input_tensor 是 张量 输入待求平均值的张量 axis 否 None、0、1 ...
原创
发布博客 2019.02.20 ·
181 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

tf.nn.bias_add

bias_add( value, bias, data_format=None, name=None)将偏差项 bias 加到 value 上面,可以看做是 tf.add 的一个特例,其中 bias 必须是一维的,并且维度和 value 的最后一维相同,数据类型必须和 value 相同。参数名 必选 类型 说明 value 是...
原创
发布博客 2019.02.20 ·
494 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

tf.placeholder

placeholder( dtype, shape=None, name=None)是一种占位符,在执行时候需要为其提供数据参数名 必选 类型 说明 dtype 是 dtype 占位符数据类型 shape 否 1 维整形张量或 array 占位符维度 name 否 string ...
原创
发布博客 2019.02.20 ·
244 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

tf.constantconstant( value, dtype=None, shape=None, name='Const', verify_shape=F

constant( value, dtype=None, shape=None, name='Const', verify_shape=False)根据 value 的值生成一个 shape 维度的常量张量 参数名 必选 类型 说明 value 是 常量数值或者 list 输出张量的值 dtype...
原创
发布博客 2019.02.20 ·
383 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

tf.truncated_normal

truncated_normal( shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)产生截断正态分布随机数,取值范围为 [ mean - 2 * stddev, mean + 2 * stddev ]。参数名 必选 类型 说明 s...
原创
发布博客 2019.02.20 ·
296 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

tf.nn.sigmoid_cross_entropy_with_logits

先对logits通过sigmoid计算,再计算交叉熵logists和sigmoid函数可参考:https://blog.csdn.net/WWWWWWGJ/article/details/87968674sigmoid函数: :sigmoid_cross_entropy_with_logits( _sentinel=None, labels=None, ...
原创
发布博客 2019.02.20 ·
976 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

tf.nn.dropout

 dropout(随机失活): 是为了解决深度神经网络的过拟合(overfitting)和梯度消失(gradient vanishing)而被提出的优化方法。dropout是通过遍历神经网络每一层的节点,然后通过对该层的神经网络设置一个keep_prob(节点保留概率),即该层的节点有keep_prob的概率被保留,keep_prob的取值范围在0到1之间。通过设置神经网络该层节点的保留概率,...
原创
发布博客 2019.02.20 ·
324 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

tf.nn.max_pool

max_pool( value, ksize, strides, padding, data_format='NHWC', name=None)参数名 必选 类型 说明 value 是 tensor 4 维的张量,即 [ batch, height, width, channels ],数据类型为 tf...
原创
发布博客 2019.02.20 ·
325 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多