几个极限

(1)\(\frac{n^k}{a^n}(a>1)\)

(2)\(\frac{a^n}{n!}\)

(3)\(\frac{\log_a{n}}{n}\)

(4)\(\frac{\log_a^{\alpha}{n}}{n^{\beta}}\)

(1)
\(a^n=(1+a-1)^n>C_n^{[k]+1}(a-1)^{[k]+1}\)
\(0<\frac{n^k}{a^n}<\frac{n^k([k]+1)!}{n(n-1)...(n-[k])}\frac{1}{(a-1)^{[k]+1}}\)
夹挤原理
(2)
\(\forall \varepsilon>0 \space \exists N=?? s.t.当n>N时\frac{a^n}{n!}<\varepsilon\)
预谋:
\(\frac{a^n}{n!}=\frac{a^a}{a!}\frac{a^{n-a}}{(a+1)*...*n}<\frac{a^a}{a!}\frac{a^{n-a}}{{(a+1)}^{n-a}}<\varepsilon\)
解得
\(n_0>\frac{\varepsilon a!}{a^aln(\frac{a}{a+1})}+a\)
可取
\(N=max\{[n_0]+1,1\}\)//我不确定这个\(n_0\)能娶到负数不?

(3)
\(\forall \varepsilon>0 \space \exists N=?? s.t.当n>N时\frac{\log_a{n}}{n}<\varepsilon\)
预谋:
\(当N>100时,\ln n<\sqrt{n}\)
\(\log_a{n}=\frac{\ln n}{\ln a}\)
\(\frac{\log_a{n}}{n}=\frac{1}{\ln a}\frac{\ln n}{n}<\frac{1}{\ln a}\frac{1}{\sqrt{n}}<\varepsilon\)
解得:
\(n_0>(\frac{1}{\varepsilon\ln a})^2\)
\(N=[n_0]+1\)

(4)
咕了

Written with StackEdit.

转载于:https://www.cnblogs.com/dashuai009/p/10222563.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值