【 同 余 定 理 (补充)】

本文介绍了同余问题的基本概念及解决方法,包括常见的口诀和定理,并通过多个实例展示了如何利用这些方法来解决实际问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分三类:口诀套用,化余为一,其他
“差同减差,和同加和,余同取余,最小公倍加”这是同余问题的口诀。

同余公式也有许多我们常见的定律,比如相等律,结合律,交换律,传递律….如下面的表示:

1)a≡a(mod d)

2)a≡b(mod d)→b≡a(mod d)

3)(a≡b(mod d),b≡c(mod d))→a≡c(mod d)

如果a≡x(mod d),b≡m(mod d),则

4)a+b≡x+m (mod d)

5)a-b≡x-m (mod d)

6)a*b≡x*m (mod d )

7)当d为素数时 若ab≡0 mod(d) 则有 a or b≡0 mod(d)

例1 证明:正整数a是9的倍数必须且只须a的各位数码之和是9的倍数。

证 设a=an.10n+an-1.10n-1+…+a0

由10≡1 (mod 9)得10k≡1(mod 9),k=0,1,2,…,n,

所以 ak.10k≡ak (mod 9), k=0,1,2,…,n。

所以a≡a0+a1+…+an (mod 9)

因此 9|a的充要条件是 9| a0+a1+…+an 。

例2 设a=anan-1…a1a0,求11|a的充要条件。

解由10≡-1 (mod 11),得10k≡(-1)k (mod 11), k=0,1,2,…,n

而 a≡a0-a1+a2-…+(-1)nan (mod 11)

因此 11|a的充要条件是11| a0-a1+a2-…+(-1)nan.

例3 求正整数a能被7整除的条件。

解 由于 1000≡-1 (mod 7),从而1000k≡(-1)k (mod 7), k=0,1,2,…,n,

于是设a= anan-1…a1a0 (1000) 这就有a≡a0-a1+a2-…+(-1)nan (mod 7)

因此 7|a的充要条件是a0-a1+a2-…+(-1)nan ≡0 (mod 7) 这里的ai为三位数(一千进制).

如当a=89101234579时,由于579-234+101-89=357≡0 (mod 7),所以7|a。

所谓同余问题,就是给出“一个数除以几个不同的数”的余数,反求这个数,称作同余问题。
首先要对这几个不同的数的最小公倍数心中有数,下面以4、5、6为例,请记住它们的最小公倍数是60。

1、差同减差:用一个数除以几个不同的数,得到的余数,与除数的差相同,
此时反求的这个数,可以选除数的最小公倍数,减去这个相同的差数,称为:“差同减差”。
例:“一个数除以4余1,除以5余2,除以6余3”,因为4-1=5-2=6-3=3,所以取-3,表示为60n-3。
【60后面的“n”请见4、,下同】

2、和同加和:用一个数除以几个不同的数,得到的余数,与除数的和相同,
此时反求的这个数,可以选除数的最小公倍数,加上这个相同的和数,称为:“和同加和”。
例:“一个数除以4余3,除以5余2,除以6余1”,因为4+3=5+2=6+1=7,所以取+7,表示为60n+7。

3、余同取余:用一个数除以几个不同的数,得到的余数相同,
此时反求的这个数,可以选除数的最小公倍数,加上这个相同的余数,称为:“余同取余”。
例:“一个数除以4余1,除以5余1,除以6余1”,因为余数都是1,所以取+1,表示为60n+1。

4、最小公倍加:所选取的数加上除数的最小公倍数的任意整数倍(即上面1、2、3中的60n)都满足条件,
称为:“最小公倍加”,也称为:“公倍数作周期”。

余數問題中的一個重要問題就是同余問題,在同余問題解決過程中,推薦代入法和口訣法兩大類。其中口訣法是公倍數做周期,余同取余,和同加和,差同減差的應用,但是有時候會出現余不同,和不同並且差也不同的現象,這就需要我們採用剩余定理進行解決。

剩余定理的原理比較繁瑣,不如直接套用解題方法進行快速解題更能解決行測中的類似問題。下面給出一些例題,對剩余定理的解題方法加以熟練:
【例1】一個數被3除余1,被4除余2,被5除余4,這個數最小是多少?
【華圖公務員考試研究中心解析】題中3、4、5三個數兩兩互質。
則〔4,5〕=20﹔〔3,5〕=15﹔〔3,4〕=12﹔〔3,4,5〕=60。
為了使20被3除余1,用20×2=40﹔
使15被4除余1,用15×3=45﹔
使12被5除余1,用12×3=36。
然后,分別乘以他們的余數:40×1+45×2+36×4=274,
因為,274>60,所以,274-60×4=34,就是所求的數。
【例2】一個數被3除余2,被7除余4,被8除余5,這個數最小是多少?
在1000內符合這樣條件的數有幾個?
【華圖公務員考試研究中心解析】題中3、7、8三個數兩兩互質。
則〔7,8〕=56﹔〔3,8〕=24﹔〔3,7〕=21﹔〔3,7,8〕=168。
為了使56被3除余1,用56×2=112﹔
使24被7除余1,用24×5=120﹔
使21被8除余1,用21×5=105﹔
然后,112×2+120×4+105×5=1229。
因為,1229>168,所以,1229-168×7=53,就是所求的數。
再用(1000-53)/168得5, 所以在1000內符合條件的數有5個。
【例3】一個數除以5余4,除以8余3,除以11余2,求滿足條件的最小的自然數。
【華圖公務員考試研究中心解析】題中5、8、11三個數兩兩互質。
則〔8,11〕=88﹔〔5,11〕=55﹔〔5,8〕=40﹔〔5,8,11〕=440。
為了使88被5除余1,用88×2=176﹔
使55被8除余1,用55×7=385﹔
使40被11除余1,用40×8=320。
然后,176×4+385×3+320×2=2499,
因為,2499>440,所以,2499-440×5=299,就是所求的數。
【例4】有一個年級的同學,每9人一排多5人,每7人一排多1人,每5人一排多2人,問這個年級至少有多少人 ?
【華圖公務員考試研究中心解析】題中9、7、5三個數兩兩互質。
則〔7,5〕=35﹔〔9,5〕=45﹔〔9,7〕=63﹔〔9,7,5〕=315。
為了使35被9除余1,用35×8=280﹔
使45被7除余1,用45×5=225﹔
使63被5除余1,用63×2=126。
然后,280×5+225×1+126×2=1877,
因為,1877>315,所以,1877-315×5=302,就是所求的數。
對剩余定理問題進行直接套用的方式是解決此類題目最快的方法,華圖公務員考試研究中心希望考生記住解題步驟,進行相關問題的解決。
來源:華圖教育

剩余定理的一般情况:
一个数,除以7余3,除以8余6,除以5余2,求满足这些条件的所有三位数。

卡卡西解析:

一个数除以7余3,可以把这个数字表示为7a+3,同理有5b+2 8d+6
7a+3=5b+2
7a+1=5b
a=2 b=3 最小公倍数35
35c+17=8d+6
32c+8+3c+3=8d(因为32C+8 肯定是8的倍数,所以不予再考虑)
3c+3=8d
C=7
35*7+17=262 262+280N

一个整数除300、262、205,得到相同的余数,问这个整数是几?

分析:根据同余的性质:此三数种任何两数的差都应是除数的倍数,即除数应是此三数中任两数的差的公约数。

解:300-262=38
262-205=57
(28,57)=19

12 +22 + 32 +……+20012+20022除以7的余数是_

方法一:
根据公式:1^2+2^2+…+n^2=n(n+1)(2n+1)/6
方法二:
÷7=0…1, ÷7=0…4, ÷7=1…2, ÷7=2…2, ÷7=3…4, ÷7=5…1, ÷7=7(余数为0), , ÷7与 ÷7余数相同,同样地, ÷7与 ÷7余数相同,…….所以,每7个连续自然数的平方之和除以7的余数为1+4+2+2+4+1除以7的余数,而(1+4+2+2+4+1)÷7=2(余数 为0),而2002÷7=286,所以原式能被7整除,即除以7的余数为0

今天星期一,1998的1986次方天后星期几?

1998的1986次=(265*7+3)1986次
=3的1986次
3^0 整除7的余数是 1
3^1 整除7的余数是 3
3^2 整除7的余数是 2
3^3 整除7的余数是 6
3^4 整除7的余数是 4
3^5 整除7的余数是 5
3^6 整除7的余数是 1
由此可见,6次一循环
所以:3的1986(1986/6=331,余数为0)次除7的余数为
3^0/7=1
1+1=2

<think>好的,用户现在问的是“办公桌靠北墙”,结合之前的对话历史,我需要根据他的房间布局和风水要求来分析这个摆放是否合适。首先,用户之前的房间布局中,办公桌被建议放在西窗东侧,坐西朝东,背靠实体墙。现在用户可能想调整办公桌的位置,考虑靠北墙摆放。 我需要先回忆用户提供的房间结构。房间是长方形,长7.2米,宽3.2米。门在正东靠近南墙,正对西边的窗户。东北角有卫生间,东南角有固的衣柜。床靠北墙居中,沙发靠南墙。办公桌原本在西窗东侧,现在用户可能想移动办公桌到北墙。 接下来要考虑风水因素。用户的八字日主是庚金,需要加强水木元素平衡金土过旺。北墙在五行中属水,对庚金有利,因为金生水,水能泄金之气,有助于平衡。此外,北方的水元素可以增强用户的运势,尤其是事业和财运。 但需要注意北墙的具体情况。用户原本的床位已经靠北墙居中,如果办公桌也放在北墙,可能会占用空间,导致通道狭窄。房间宽度是3.2米,床1.2米宽,如果床靠北墙,床与南墙之间剩2米。如果办公桌靠北墙,可能需要放在床的旁边,但需要确保足够的通行空间,至少0.9米。 另外,办公桌的朝向也很重要。如果靠北墙,坐北朝南,这样背后有靠山(北墙),面前视野开阔,符合风水中的“前明堂后靠山”原则。但需要注意避免背对门或窗,不过在这个布局中,门在东,窗在西,坐北朝南的话,背后是墙,面前是房间中央,可能比较合适。 还要考虑西边的窗户是否有直冲的问题。原本建议的办公桌位置在西窗东侧,可能避免了西晒,而靠北墙的话,可能离窗户较远,采光可能不足,需要补充照明。时,西边属金,可能加重用户的五行金气,但靠北墙属水,可能更有利。 另外,用户需要加强水木元素,办公桌靠北墙(水),可以在桌上放置属水的物品,如黑色或蓝色的装饰,或者水杯、小鱼缸,增强水元素。时,木元素可以通过绿色植物或木质家具来补充,但要注意植物不要过多,以免与卫生间或衣柜的位置冲突。 还需要检查是否有冲煞,比如办公桌是否正对卫生间门或衣柜门。卫生间在东北角,门朝南开,而北墙的办公桌位置应该离东北角有一距离,可能不会有直接对冲。衣柜在东南角,门正对卫生间,办公桌靠北墙应该不会正对衣柜门。 最后,考虑实际空间布局。床靠北墙居中,床的尺寸是1.2x2米,北墙长7.2米,床居中后左右两侧可能有空间。如果办公桌放在北墙的东侧或西侧,需要测量剩空间是否足够。例如,床居中后,床东侧可能有空间,但那边靠近东门,可能会影响动线。西侧可能靠近西窗,但原本建议的办公桌位置在西窗东侧,现在改到北墙西侧的话,可能离窗较近,采光好,但要注意与床的距离。 综合以上因素,办公桌靠北墙是可行的,但需要注意空间布局是否允许,以及是否满足风水上的要求,如背后有靠、面前开阔、避免冲煞等。时,通过颜色和物品调整来增强水木元素,平衡五行。</think>根据您的需求,结合风水学原理与空间规划逻辑,现将办公桌靠北墙的布局方案分析如下: $$办公桌位分析:北墙(坎宫)属水,与日主庚金形成金生水相生格局$$ 一、基本布局建议 1. **坐向选择** - 优先采用$$坐北朝南(壬山丙向)$$ - 次选$$坐西北朝东南(乾山巽向)$$ *避开门窗直线冲射,保持背靠实体墙* 2. **尺寸匹配** $$可用北墙净长度 = 7.2m - 床宽1.2m = 6m$$ *建议办公桌长度控制在1.8m以内,与床保持至少0.6m间距* 二、风水优化要点 1. **五行调和** - 桌面配置黑色鼠标垫(水) - 东南角放置文昌塔(木火相生) $$建议水木元素比例:3:2(水>木)$$ 2. **气调整** - 桌面左青龙位(东侧)设置文件柜 - 右白虎位(西侧)保持清爽 *避免在辰位(东南偏南)堆放杂物* 三、空间规划验证 1. **通道计算** $$北墙通道 = 3.2m(房间宽) - 0.6m(桌深) - 0.9m(最小通行) = 1.7m$$ *满足正常活动需求* 2. **功能分区** ```plaintext | 床(1.2m) | 办公区(1.8m) | 过渡区(3m) | |----------|-------------|-----------| ``` 四、特殊注意事项 1. 避开卫生间气口:东北方卫生间门需常闭,建议在办公桌东北角悬挂六帝钱 2. 化解梁柱影响:若北墙有结构梁,需在梁下设置葫芦形灯具 3. 采光补偿:西北角应增设4000K色温照明,亮度不低于300lux 五、增强运势配置 1. 桌面正北方位放置黑色砚台 2. 办公椅选用深蓝色布艺材质 3. 每周一更换新鲜绿植(推荐富贵竹) 注:此方案需确保佛龛保持原有西南方位不变,若办公桌与佛龛形成直线对冲,应在中间设置纱帘缓冲。建议实际布局后使用罗盘复核子午线偏,允许±5°误范围。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值