堆的应用----Top K问题

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Wan_shibugong/article/details/80321305

优先级队列(
海量数据Top K 问题

100亿个数据中找出最大的前K个数,我们可以遍历K次,但是时间复杂度太大为O(KN),所以我们使用堆来实现,只进行一次遍历

  • 获取最大的前k个元素,我们可以使用小堆来实现,让堆顶最小元素与查找元素比较,如果大于对顶交换。然后进行向下调整,继续进行比较,直到元素比较完。
  • 获取最小的前k个元素,我们可以使用大堆来实现,让对顶最大元素与查找元素比较,如果小于对顶交换。然后进行向下调整,继续进行比价,知道元素比较完。

代码实现
使用到堆的基本操作
我们可以使用有限的数据来代替
代码中使用到了堆中的结构体,向下调整,交换函数,大堆小堆函数指针
Top-k.h

#pragma once

#include "Heap.h"

//初始化
void HeapTopkInit(Heap * hp,Compare cmp,int k);

//求最小k个元素
void TopK(Heap * hp,DataType * array,long size,int k);

//打印前k个元素
void TopKprint(Heap * hp);

Top-k.c

#include "Top-k.h"

//初始化
void HeapTopkInit(Heap * hp,Compare cmp,int k)
{
    assert(hp);
    hp->_array = (DataType *)malloc(sizeof(DataType)*k);
    if(NULL == hp->_array)
    {
        printf("申请空间失败!!!\n");
        assert(0);
    }
    hp->com = cmp;
    hp->_capacity = k;
    hp->_size = 0;
}

//求最最小的k个元素
void TopK(Heap * hp,DataType * array,long size,int k)
{
    int i = 0;
    assert(hp);
    for(i=0; i<k; ++i)
    {
        hp->_array[i] = array[i];
        hp->_size += 1;
    }
    for(i=k; i<size; ++i)
    {
        if(hp->com(hp->_array[0],array[i]))
            swap(&array[i],&hp->_array[0]);
            AdjustDown(hp,0);
    }
}

//打印最小元素
void TopKprint(Heap * hp)
{
    int i = 0;
    for(i=0; i< hp->_size; ++i)
    {
        printf("%d ",hp->_array[i]);
    }
}

test.c

#include "Heap.h"
#include "PriorityQueue.h"
#include "Top-k.h"

//求海量数中的最大的前k个数
void TopkTest();

int main()
{
    TopkTest();
    return 0;
}

//求海量数中的最大的前k个数
void TopkTest()
{
    Heap hp;
    DataType array[] = {6,4,6,82,9,3,68,2};
    int k = 3;
    HeapTopkInit(&hp,Great,3);
    TopK(&hp,array,sizeof(array)/sizeof(array[0]),3);
    TopKprint(&hp);
}
阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页