考研数学 之 汤家凤老师来校讲座摘记 (拉格朗日定理等干货 )

考研数学 之 汤家凤老师来校讲座摘记 (拉格朗日定理等干货 )

2021年3月12日

刚开始复习考研数学没多久
得知大名鼎鼎的汤神要来我们学校做讲座
在某帅气的zqq推荐下 我参与了这次讲座
听完讲座之后感觉受益匪浅
于是打算写这篇文章来记录一下

摘要

先放几张讲座现场的照片
在这里插入图片描述

在这里插入图片描述

正文

主要还是记录一下这次讲座的一些收货和我觉得学习到的干货

学习规划

学习的规划方面主要有以下三点

  • 在6.30日前完成基础阶段的复习
  • 基础课的学习要系统
    • 可以看汤老师在B站的视频, (虽然我买了其他老师的课,但汤老师的讲课水平是不容置疑的)
    • 我觉得一旦选定了基础课的老师就不要换了,每个老师都有自己讲课的风格和安排,随意更换可能会产生一些问题
  • 练习
    • 这一点非常重要, 数学的学习需要大量的练习,每章学习完之后都要进行大量的题目练习,不然很容易忘记

方法体系有如下两点

  • 理论体系
  • 方法体系

在这里插入图片描述

干货记录

在讲座中, 汤老师带来的大多数都是干货, 我就选取其中重要的部分做一个简单的记录

定积分

现在网上大多数讲解定积分都是从下面这张图来展开的
在这里插入图片描述
但是当我们看到这张图的时候,我们要想到的更多

  • A = ? A = ? A=? (阴影部分的面积)
  • V x = ? V_x = ? Vx=? (曲线绕 x 轴旋转的面积)
  • V y = ? V_y = ? Vy=? (曲线绕 y 轴旋转的面积)
  • $S = ? $ (绕X轴旋转体的侧面积)
拉格朗日定理

接下来的一大段时间,汤神都在介绍拉格朗日定理
对拉格朗日的一套体系让我受益匪浅
之前只是停留在会做题的阶段 而没有形成一套体系
下面就记录一下汤神对拉格朗日的总结

定理介绍
在这里插入图片描述

通常若题目中出现如下几种情况时 要使用拉格朗日定理

  1. f ( b ) − f ( a ) f(b) - f(a) f(b)f(a) 90 % 90\% 90%的几率要用
  2. f ( a ) ≠ f ( b ) f(a) ≠ f(b) f(a)=f(b) 可能用 可能不用
  3. f ( a ) , f ( b ) , f ( c ) f(a) ,f(b),f(c) f(a),f(b),f(c) 使用两次定理
  4. f ( x ) f(x) f(x) 指向 f ′ ( x ) f'(x) f(x)
接下来便是一些案例来帮助我们理解, 下面是我记录的部分题目

案例2

已知 f ′ ′ > 0 , 求 f ′ ( 0 ) , f ′ ( 1 ) . f ( 1 ) − f ( 0 ) 三 者 之 间 的 大 小 f''>0, 求 f'(0), f'(1). f(1)-f(0) 三者之间的大小 f>0,f(0),f(1).f(1)f(0)


解析
本题出现了 f ( 1 ) − f ( 0 ) f(1)-f(0) f(1)f(0) 也就是 f ( b ) − f ( a ) f(b) - f(a) f(b)f(a)的形式
很自然的想到用拉格朗日定理
f ( 1 ) − f ( 0 ) = f ′ ( ξ ) ( 1 − 0 )        ξ ∈ ( 0 , 1 ) f(1)-f(0)=f'(\xi)(1-0) \ \ \ \ \ \ \xi\in(0,1) f(1)f(0)=f(ξ)(10)      ξ(0,1)
∵ f ′ ′ > 0 ∵ f''>0 f>0$
∴ f ′ 在 ( 0 , 1 ) 上 单 调 递 增 ∴f'在(0,1)上单调递增 f(0,1)
∴ f ′ ( 0 ) < f ′ ( ξ ) < f ′ ( 1 ) ∴f'(0)<f'(\xi)<f'(1) f(0)<f(ξ)<f(1)


案例2
lim ⁡ x → + ∞ x 2 ( s i n 1 x − s i n 1 x + 1 ) \lim\limits_{x\rightarrow+\infty}x^2(sin\frac{1}{x}- sin\frac{1}{x+1}) x+limx2(sinx1sinx+11)

解析
f ( t ) = s i n x f(t) = sinx f(t)=sinx
然后用拉格朗日


案例3
已知 f ′ ′ > 0 f''>0 f>0 求证 2 f ( 1 ) < f ( 0 ) + f ( 2 ) 2f(1) < f(0) + f(2) 2f(1)<f(0)+f(2)

解析
拆成如下
f ( 1 ) − f ( 0 ) < f ( 2 ) − f ( 1 ) f(1) - f(0) < f(2) - f(1) f(1)f(0)<f(2)f(1)
两次拉格朗日

f ( n ) ( ξ ) = 0 f^{(n)}(\xi)=0 f(n)(ξ)=0形式的解法

f ( n ) ( ξ ) = 0 f^{(n)}(\xi)=0 f(n)(ξ)=0

n = 1 时 : { 找 f ( a ) = f ( b ) 用 罗 尔 定 理 极 值 点      ☆ ( 一 般 书 上 不 讲 这 个 方 法 ) n = 1时: \begin{cases} 找 f(a)=f(b) 用罗尔定理 \\ 极值点 \ \ \ \ ☆(一般书上不讲这个方法) \end{cases} n=1:{f(a)=f(b)    ()
n = 2 时 : { 找 f ( a ) = f ( b ) = f ( c ) 找 f ′ ( a ) = f ′ ( b ) n = 2时: \begin{cases} 找 f(a)=f(b)=f(c)\\ 找 f'(a) = f'(b) \end{cases} n=2:{f(a)=f(b)=f(c)f(a)=f(b)


案例
f ( 0 ) = 1 , f ( 1 2 ) = 2 , f ( 1 ) = − 1 , 证 ∃ ξ ∈ ( 0 , 1 )      f ′ ( ξ ) = 0 f(0)=1, f(\frac{1}{2})=2, f(1)=-1, 证\exists\xi\in(0,1) \ \ \ \ f'(\xi)=0 f(0)=1,f(21)=2,f(1)=1,ξ(0,1)    f(ξ)=0

解析
ϕ ( x ) = f ( x ) − 1 \phi(x) = f(x)-1 ϕ(x)=f(x)1
然后通过零点定理找出 ϕ ( c ) = 0 = ϕ ( 0 ) \phi(c) = 0 = \phi(0) ϕ(c)=0=ϕ(0)

结束

先记录这么多吧
附上汤老师的签名, 祝大家考研数学路上顺利
在这里插入图片描述
在这里插入图片描述

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Joker-Tong

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值