[ARC095F]Permutation Tree

版权声明:本文为博主原创文章,未经博主允许随便转载。 https://blog.csdn.net/WenDavidOI/article/details/79966927

最近刷AtCoder,觉得刷得挺爽的,每次的F题都有一定难度,但是却还是挺可做的>_<反正AtCoder对于我这种英文不好的选手来说非常友善,看一眼就读完题面了

题意

Takahashi有一种能力以以下步骤用一个排列(p1,p2,,pn)来生成一棵树:

首先,按照以下操作准备顶点1N。对于顶点i

  • 如果pi=1,什么都不做
  • 如果pi1,让j表示最大的满足pj<pij。在ji之间连一条边

给出按照这个过程建立的一棵树,判定是否能够用另外一个排列做出一棵与此同构的树,问这个要求字典序最小的排列应该是什么,无解输出1
1n105

分析

考虑我们将这个操作的过程改写成:一开始全是黑点,然后我们将pi按照升序排列,考虑为原来的i。然后我们令一个max=1,考虑从左到右扫一遍,如果发现i>max,那么将i染红,并将max替换成i;如果当前的pi1,那么连边(注意一下,原来的过程那里,j并不一定小于i……这里是对于全局的……)。
这个过程符合原来的性质,因为每次和某个点连接的红点,肯定是比pi小,而且最接近。这时候我们会发现,我们得到的这个红点之间的链,相当于一条“直径”的东西,然后剩下的黑点都向着这个直径上连边,而且显然黑点之间没有边。
实际上按照原来的过程也可以感受出来,某一个pi很小但是i很大的点,可能会能够“占领”一大堆点,直到某一个i更大的点出现。
这样的图是一个“毛虫图”。如果给定的图不是一个“毛虫图”,那肯定不对,这和我们刚刚证明的不一样……至于要字典序最小,那直接反向构造即可。

阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页