前言
之前看Fast-LIO的时候,了解过卡尔曼滤波的知识,重新整理下。同时推荐一个很棒的Kalman Filter讲解网站:https://www.kalmanfilter.net,这里有关于网站的速览:https://mp.weixin.qq.com/s/QGmX4ygxqpVXjpkl40MBiA。
一、初印象
卡尔曼滤波是最重要和最常见的估计算法,基于不精确、不确定的观测来估计和预测隐藏变量(或称为状态);它基于马尔科夫假设,假设当前状态只与上一时刻状态有关。根据上时刻状态量、输入以及观测量,推导出当前时刻状态和协方差矩阵。
显然,从卡尔曼滤波的描述上看,它符合我们在SLAM系统中根据传感器数据估计机器人位姿的需求。
二、基本概念
记录一些描述的很清晰的概念。
-
估计、准确度和精度
估计(Estimate ):对系统隐藏状态的估计。
准确度(accuracy):描述了测量值和真值的接近程度。
精度(precision):描述了同一参数的多次测量的变化情况。
本文介绍了卡尔曼滤波的基本概念,如估计、准确度和精度,并详细阐述了预测方程、卡尔曼增益、状态更新方程和协方差更新方程。卡尔曼滤波在SLAM系统中有重要应用,通过不断更新状态来提高估计准确性。
最低0.47元/天 解锁文章
978

被折叠的 条评论
为什么被折叠?



