卡尔曼滤波

本文介绍了卡尔曼滤波的基本概念,如估计、准确度和精度,并详细阐述了预测方程、卡尔曼增益、状态更新方程和协方差更新方程。卡尔曼滤波在SLAM系统中有重要应用,通过不断更新状态来提高估计准确性。
摘要由CSDN通过智能技术生成

前言

之前看Fast-LIO的时候,了解过卡尔曼滤波的知识,重新整理下。同时推荐一个很棒的Kalman Filter讲解网站:https://www.kalmanfilter.net,这里有关于网站的速览:https://mp.weixin.qq.com/s/QGmX4ygxqpVXjpkl40MBiA

一、初印象

卡尔曼滤波是最重要和最常见的估计算法,基于不精确、不确定的观测来估计和预测隐藏变量(或称为状态);它基于马尔科夫假设,假设当前状态只与上一时刻状态有关。根据上时刻状态量、输入以及观测量,推导出当前时刻状态和协方差矩阵。

显然,从卡尔曼滤波的描述上看,它符合我们在SLAM系统中根据传感器数据估计机器人位姿的需求。

二、基本概念

记录一些描述的很清晰的概念。

  1. 估计、准确度和精度
    估计(Estimate ):对系统隐藏状态的估计。
    准确度(accuracy):描述了测量值和真值的接近程度。
    精度(precision):描述了同一参数的多次测量的变化情况。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值