不来也不去的一只失忆蝴蝶

曾迷途才怕追不上满街赶路人

[2017计蒜之道复赛]商汤智能机器人

题目大意

从(0,0)出发,每次行走向量有(1,1),(2,0),(1,-1)。
求到(n,m)的方案数。
n,m 1e18。模数p是1e5+3。

做法

先转45度,并收缩1/2。
那么此时行走向量有(1,0),(1,1),(0,1)。
我们可以给出此时(0,0)到(n,m)的结论:
i=0nCniCmi2i
考虑证明:
一个合法方案的序列由→,↑,↗组成。
现在考虑把一个↗拆成→和↑。
那么序列长度一定是n+m,n个是→,m个是↑。
我们考虑枚举这个序列有i个→,满足下一个是↑。
那么假如我们知道了这些→是序列的第几个→,以及它们下一个的这些↑是序列的第几个↑,其余↑和→的填法已经确定了。这样可以不重不漏的枚举出所有→↑序列。
每个相邻的→↑都可以考虑缩成一个↗。
因此得证。
有了这条式子后,可以考虑lucas定理,只需考虑p进制下每一位。
但是有那个奇怪的2的次幂。
注意到做到p进制第k位是,此时是2ikpk,由费马小定理发现这等于2ik
因此就做完了,详见代码。

#include<cstdio>
#include<algorithm>
#define fo(i,a,b) for(i=a;i<=b;i++)
#define fd(i,a,b) for(i=a;i>=b;i--)
using namespace std;
typedef long long ll;
const int maxn=200000+10,p=100003;
int fac[maxn],inv[maxn];
int i,j,k,l,t,ans;
ll n,m,x,y;
int C(int n,int m){
    if (n<m||m<0) return 0;
    return (ll)fac[n]*inv[m]%p*inv[n-m]%p;
}
int work(int n,int m){
    if (n>m) swap(n,m);
    int i,r=0,t=1;
    fo(i,0,n){
        (r+=(ll)C(n,i)*C(m,i)%p*t%p)%=p;
        t=(ll)t*2%p;
    }
    return r;
}
int main(){
    freopen("move.in","r",stdin);freopen("move.out","w",stdout);
    scanf("%lld%lld",&x,&y);
    if ((x+y)%2){
        printf("0\n");
        return 0;
    }
    n=(x+y)/2;m=(x-y)/2;
    if (n<0||m<0){
        printf("0\n");
        return 0;
    }
    fac[0]=1;
    fo(i,1,p-1) fac[i]=(ll)fac[i-1]*i%p;
    inv[p-1]=1;
    fo(i,1,p-2) inv[p-1]=(ll)inv[p-1]*fac[p-1]%p;
    fd(i,p-2,0) inv[i]=(ll)inv[i+1]*(i+1)%p;
    ans=1;
    while (n||m){
        ans=(ll)ans*work(n%p,m%p)%p;
        n/=p;m/=p;
    }
    (ans+=p)%=p;
    printf("%d\n",ans);
}
阅读更多
版权声明:本文是蒟蒻写出来的,神犇转载也要说一声哦! https://blog.csdn.net/WerKeyTom_FTD/article/details/79743804
个人分类: 排列组合
上一篇Zkb
下一篇[Yandex.Algorithm 2018, second qualification round E]Bonsai
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭