❤️两万字《算法 + 数据结构》刷了 3333 道算法题后的一点总结❤️(建议收藏)

《LeetCode算法全集》 专栏收录该内容
48 篇文章 527 订阅

1️⃣前言:追忆我的刷题经历

  大学的时候比较疯狂,除了上课的时候,基本都是在机房刷题,当然,有时候连上课都在想题目,纸上写好代码,一下课就冲进机房把代码敲了,目的很单纯,为了冲排行榜,就像玩游戏一样,享受霸榜的快感。
  当年主要是在 杭电OJ (HDOJ)北大OJ(POJ) 这两个在线平台上刷题,那时候应该还没有(LeetCode、洛谷、牛客 这些主流的刷题网站),后来参加工作以后,剩余的时间不多了,也就没怎么刷了, 但是 算法思维 也就是靠上大学那四年锻炼出来的。


  当年题目少,刷题的人也少,所以勉强还冲到过第一,现在去看已经 58 名了,可见 长江后浪推前浪,前浪 S 在沙滩上。时势造英雄啊!

  北大人才辈出,相对题目也比较难,所以明显有点 心有余而力不足 的感觉,刷的相对就少很多,而且这个 OJ 也没什么人维护了,看我的签名,当时竟然还想着给博客引点流,现在估计都没什么人去那个网站了吧,如果有,记得评论区告诉我,一起缅怀一下逝去的青春。

🙉饭不食,水不饮,题必须刷🙉

C语言免费动漫教程,和我一起打卡!
🌞《光天化日学C语言》🌞

LeetCode 太难?先看简单题!
🧡《C语言入门100例》🧡

数据结构难?不存在的!
🌳《数据结构入门》🌳

LeetCode 太简单?算法学起来!
🌌《夜深人静写算法》🌌

在这里插入图片描述

2️⃣算法和数据结构的重要性

👪1、适用人群

  • 这篇文章会从 「算法和数据结构」 零基础开始讲,所以,如果你是算法大神,可以尽情在评论区嘲讽我哈哈,目的当然是帮助想要涉足算法领域,或者正在找工作的朋友,以及将要找工作的大学生,更加有效快速的掌握算法思维,能够在职场面试和笔试中一展身手。
  • 这篇文章中,我会着重讲解一些常见的 「算法和数据结构」 的设计思想,并且配上动图。主要针对面试中常见的问题和新手朋友们比较难理解的点进行解析。当然,后面也会给出面向算法竞赛的提纲,如果有兴趣深入学习的欢迎在评论区留言,一起成长交流。
  • 零基础学算法的最好方法,莫过于刷题了。任何事情都是需要坚持的,刷题也一样,没有刷够足够的题,就很难做出系统性的总结。所以上大学的时候,我花了三年的时间来刷题, 工作以后还是会抽点时间出来刷题。

千万不要用工作忙来找借口,时间挤一挤总是有的。

  • 我现在上班地铁上一个小时,下班地铁又是一个小时。比如这篇文章的起草,就是在 地铁 上完成的。如何利用这两个小时的时间,做一些有建设性的事情,才是最重要的。刷抖音一个小时过得很快,刷题也是同样的道理。
  • 当然,每天不需要花太多时间在这个上面,把这个事情做成一个规划,按照长期去推进。反正也没有 KPI 压力,就当成是工作之余的一种消遣,还能够提升思维能力。

所以,无论你是 小学生中学生高中OIer大学ACMer职场人士,只要想开始,一切都不会太晚!

🎾2、有何作用

  • 我们平常使用的 智能手机、搜索引擎、网站、操作系统、游戏、软件、人工智能,都大量地应用了 「算法与数据结构」 的知识,以及平时你用到的各种库的底层实现,也是通过各种算法和数据结构组合出来的,所以可以说,有程序的地方,就有江湖 算法,有算法就一定会有对应的数据结构。
  • 如果你只是想学会写代码,或许 「算法与数据结构」 并不是那么重要,但是想要往更深一步发展,「算法与数据结构」 是必不可少的。

  现在一些主流的大厂,在面试快结束的时候都会 奉上一道算法题,如果你敲不出来,可能你的 offer 年包就打了 七折,或者直接与 offer 失之交臂,都是有可能的(因为我自己也是万恶的面试官,看到候选人的算法题写不出来我也是操碎了心,但是我一般会给足容错,比如给三个算法题,挑一个写,任意写出一个都行)。

  • 当然,它不能完全代表你的编码能力,因为有些算法确实是很巧妙,加上紧张的面试氛围,想不出来其实也是正常的,但是你能确保面试官是这么想的吗?我们要做的是十足的准备,既然决定出来,offer 当然是越高越好,毕竟大家都要养家糊口,房价又这么贵,如果能够在算法这一块取得先机,也不失为一个捷径。

所以,你问我算法和数据结构有什么用?我可以很明确的说,和你的年薪息息相关。

  • 当然,面试中 「算法与数据结构」 知识的考察只是面试内容的一部分。其它还有很多面试要考察的内容,当然不是本文主要核心内容,这里就不做展开了。

📜3、算法简介

  • 算法是什么东西?
  • 它是一种方法,一种解决问题的方案。
  • 举个例子,你现在要去上班,可以选择 走路、跑步、坐公交、坐地铁、自己开车 等等,这些都是解决方案。但是它们都会有一些衡量指标,让你有一个权衡,最后选择你认为最优的策略去做。
  • 而衡量的指标诸如:时间消耗、金钱消耗、是否需要转车、是否可达 等等。

时间消耗就对应了:时间复杂度
金钱消耗就对应了:空间复杂度
是否可达就对应了:算法可行性

  • 当然,是否需要转车,从某种程度上都会影响 时间复杂度 或者 空间复杂度

🌲4、数据结构

  • 对于实现某个算法,我们往往会用到一些数据结构。
  • 因为我们通常不能一下子把数据处理完,更多的时候需要先把它们放在一个容器或者说缓存里面,等到一定的时刻再把它们拿出来。
  • 这其实是一种 「空间换时间」 思想的体现, 恰当使用数据结构可以帮助我们高效地处理数据。
  • 常用的一些数据结构如下:
数据结构应用场景
数组线性存储、元素为任意相同类型、随机访问
字符串线性存储、元素为字符、结尾字符、随机访问
链表链式存储、快速删除
先进后出
队列先进先出
哈希表随机存储、快速增删改查
二叉树对数时间增删改查,二叉查找树、线段树
多叉树B/B+树 硬盘树、字典树 字符串前缀匹配
森林并查集 快速合并数据
树状数组单点更新,成段求和
  • 为什么需要引入这么多数据结构呢?

  答案是:任何一种数据结构是不是 完美的。所以我们需要根据对应的场景,来采用对应的数据结构,具体用哪种数据结构,需要通过刷题不断刷新经验,才能总结出来。

3️⃣如何开始持续的刷题

  • 有朋友告诉我,题目太难了,根本不会做,每次都是看别人的解题报告。

📑1、立军令状

  • 所谓 「军令状」,其实就是给自己定一个目标,给自己树立一个目标是非常重要的,有 「目标才会有方向,有目标才会有动力,有目标才会有人生的意义」 。而军令状是贬义的,如果不达成就会有各种惩罚,所以其实你是心不甘情不愿的,于是这件事情其实是无法持久下去的。

事实证明,立军令状是不可取的。

  • 啊这……所以我们还是要采用一些能够持久下去的方法。

👩‍❤️‍👩2、培养兴趣

  • 为了让这件事情能够持久下去,一定要培养出兴趣,适时的给自己一些正反馈。正反馈的作用就是每过一个周期,如果效果好,就要有奖励,这个奖励机制可以自己设定,但是 「不能作弊」 ,一旦作弊就像单机游戏修改数值,流失是迟早的事。
  • 举个例子,我们可以给每天制定一些 「不一样的目标和奖励」 ,比如下图所示:
刷题的第?天目标题数是否完成完成奖励
11攻击力 + 10
21防御力 + 10
32出去吃顿好的
42攻击力 + 29
53防御力 + 60
61攻击力 + 20
74出去吃顿好的
81防御力 + 50
  • 当然,这个完成奖励你可以自己定,总而言之,要是对你有诱惑的奖励才是有意义的。

🚿3、狂切水题

  • 刚开始刷的 300 题一定都是 「水题」 ,刷 「水题」 的目的是让你养成一个每天刷题的习惯。久而久之,不刷题的日子会变得无比煎熬。当然,刷着刷着,你会发现,水题会越来越多,因为刷题的过程中,你已经无形中不断成长起来了。
  • 至少这个方法我用过,非常灵验!推荐刷题从水题开始。

如果不知道哪里有水题,推荐:
   C语言入门水题:《C语言入门100例》
  C语言算法水题:《LeetCode算法全集》

💪🏻4、养成习惯

  • 相信如果切了 300 个 「水题」 以后,刷题自然而然就成了习惯,想放弃都难。这个专业上讲,其实叫 沉没成本。有兴趣的可以自行百度,这里就不再累述了。

🈵5、一周出师

  • 基本上如果能够按照这样的计划去执行,一周以后,一定会有收获,没有收获的话,可以来找我。

4️⃣简单数据结构的掌握

🚂1、数组

内存结构:内存空间连续
实现难度:简单
下标访问:支持
分类:静态数组、动态数组
插入时间复杂度 O ( n ) O(n) O(n)
查找时间复杂度 O ( n ) O(n) O(n)
删除时间复杂度 O ( n ) O(n) O(n)

🎫2、字符串

内存结构:内存空间连续,类似字符数组
实现难度:简单,一般系统会提供一些方便的字符串操作函数
下标访问:支持
插入时间复杂度 O ( n ) O(n) O(n)
查找时间复杂度 O ( n ) O(n) O(n)
删除时间复杂度 O ( n ) O(n) O(n)

🎇3、链表

内存结构:内存空间连续不连续,看具体实现
实现难度:一般
下标访问:不支持
分类:单向链表、双向链表、循环链表、DancingLinks
插入时间复杂度 O ( 1 ) O(1) O(1)
查找时间复杂度 O ( n ) O(n) O(n)
删除时间复杂度 O ( 1 ) O(1) O(1)

🌝4、哈希表

内存结构:哈希表本身连续,但是衍生出来的结点逻辑上不连续
实现难度:一般
下标访问:不支持
分类:正数哈希、字符串哈希、滚动哈希
插入时间复杂度 O ( 1 ) O(1) O(1)
查找时间复杂度 O ( 1 ) O(1) O(1)
删除时间复杂度 O ( 1 ) O(1) O(1)

👨‍👩‍👧5、队列

内存结构:看用数组实现,还是链表实现
实现难度:一般
下标访问:不支持
分类:FIFO、单调队列、双端队列
插入时间复杂度 O ( 1 ) O(1) O(1)
查找时间复杂度:理论上不支持
删除时间复杂度 O ( 1 ) O(1) O(1)

👩‍👩‍👦‍👦6、栈

内存结构:看用数组实现,还是链表实现
实现难度:一般
下标访问:不支持
分类:FILO、单调栈
插入时间复杂度 O ( 1 ) O(1) O(1)
查找时间复杂度:理论上不支持
删除时间复杂度 O ( 1 ) O(1) O(1)

🌵7、二叉树

优先队列 是 堆实现的,所以也属于 二叉树 范畴。它和队列不同,不属于线性表。
内存结构:内存结构一般不连续,但是有时候实现的时候,为了方便,一般是物理连续,逻辑不连续
实现难度:较难
下标访问:不支持
分类:二叉树 和 多叉树
插入时间复杂度:看情况而定
查找时间复杂度:理论上 O ( l o g 2 n ) O(log_2n) O(log2n)
删除时间复杂度:看情况而定

🌳8、多叉树

内存结构:内存结构一般不连续,但是有时候实现的时候,为了方便,一般是物理连续,逻辑不连续
实现难度:较难
下标访问:不支持
分类:二叉树 和 多叉树
插入时间复杂度:看情况而定
查找时间复杂度:理论上 O ( l o g 2 n ) O(log_2n) O(log2n)
删除时间复杂度:看情况而定

🌲9、森林

🍀10、树状数组

🌍11、图

内存结构:不一定
实现难度:难
下标访问:不支持
分类:有向图、无向图
插入时间复杂度:根据算法而定
查找时间复杂度:根据算法而定
删除时间复杂度:根据算法而定

1、图的概念

  • 在讲解最短路问题之前,首先需要介绍一下计算机中图(图论)的概念,如下:
  • G G G 是一个有序二元组 ( V , E ) (V,E) (V,E),其中 V V V 称为顶点集合, E E E 称为边集合, E E E V V V 不相交。顶点集合的元素被称为顶点,边集合的元素被称为边。
  • 对于无权图,边由二元组 ( u , v ) (u,v) (u,v) 表示,其中 u , v ∈ V u, v \in V u,vV。对于带权图,边由三元组 ( u , v , w ) (u,v, w) (u,v,w) 表示,其中 u , v ∈ V u, v \in V u,vV w w w 为权值,可以是任意类型。
  • 图分为有向图和无向图,对于有向图, ( u , v ) (u, v) (u,v) 表示的是 从顶点 u u u 到 顶点 v v v 的边,即 u → v u \to v uv;对于无向图, ( u , v ) (u, v) (u,v) 可以理解成两条边,一条是 从顶点 u u u 到 顶点 v v v 的边,即 u → v u \to v uv,另一条是从顶点 v v v 到 顶点 u u u 的边,即 v → u v \to u vu

2、图的存储

  • 对于图的存储,程序实现上也有多种方案,根据不同情况采用不同的方案。接下来以图二-3-1所表示的图为例,讲解四种存储图的方案。

1)邻接矩阵

  • 邻接矩阵是直接利用一个二维数组对边的关系进行存储,矩阵的第 i i i 行第 j j j 列的值 表示 i → j i \to j ij 这条边的权值;特殊的,如果不存在这条边,用一个特殊标记 ∞ \infty 来表示;如果 i = j i = j i=j,则权值为 0 0 0
  • 它的优点是:实现非常简单,而且很容易理解;缺点也很明显,如果这个图是一个非常稀疏的图,图中边很少,但是点很多,就会造成非常大的内存浪费,点数过大的时候根本就无法存储。
  • [ 0 ∞ 3 ∞ 1 0 2 ∞ ∞ ∞ 0 3 9 8 ∞ 0 ] \left[ \begin{matrix} 0 & \infty & 3 & \infty \\ 1 & 0 & 2 & \infty \\ \infty & \infty & 0 & 3 \\ 9 & 8 & \infty & 0 \end{matrix} \right] 0190832030

2)邻接表

  • 邻接表是图中常用的存储结构之一,采用链表来存储,每个顶点都有一个链表,链表的数据表示和当前顶点直接相邻的顶点的数据 ( v , w ) (v, w) (v,w),即 顶点 和 边权。
  • 它的优点是:对于稀疏图不会有数据浪费;缺点就是实现相对邻接矩阵来说较麻烦,需要自己实现链表,动态分配内存。
  • 如图所示, d a t a data data ( v , w ) (v, w) (v,w) 二元组,代表和对应顶点 u u u 直接相连的顶点数据, w w w 代表 u → v u \to v uv 的边权, n e x t next next 是一个指针,指向下一个 ( v , w ) (v, w) (v,w) 二元组。
  • 在 C++ 中,还可以使用 vector 这个容器来代替链表的功能;
    vector<Edge> edges[maxn];

3)前向星

  • 前向星是以存储边的方式来存储图,先将边读入并存储在连续的数组中,然后按照边的起点进行排序,这样数组中起点相等的边就能够在数组中进行连续访问了。
  • 它的优点是实现简单,容易理解;缺点是需要在所有边都读入完毕的情况下对所有边进行一次排序,带来了时间开销,实用性也较差,只适合离线算法。
  • 如图所示,表示的是三元组 ( u , v , w ) (u, v, w) (u,v,w) 的数组, i d x idx idx 代表数组下标。
    在这里插入图片描述
  • 那么用哪种数据结构才能满足所有图的需求呢?
  • 接下来介绍一种新的数据结构 —— 链式前向星。

4)链式前向星

  • 链式前向星和邻接表类似,也是链式结构和数组结构的结合,每个结点 i i i 都有一个链表,链表的所有数据是从 i i i 出发的所有边的集合(对比邻接表存的是顶点集合),边的表示为一个四元组 ( u , v , w , n e x t ) (u, v, w, next) (u,v,w,next),其中 ( u , v ) (u, v) (u,v) 代表该条边的有向顶点对 u → v u \to v uv w w w 代表边上的权值, n e x t next next 指向下一条边。
  • 具体的,我们需要一个边的结构体数组 edge[maxm]maxm表示边的总数,所有边都存储在这个结构体数组中,并且用head[i]来指向 i i i 结点的第一条边。
  • 边的结构体声明如下:
struct Edge {
    int u, v, w, next;
    Edge() {}
    Edge(int _u, int _v, int _w, int _next) :
        u(_u), v(_v), w(_w), next(_next) 
    {
    }
}edge[maxm];
  • 初始化所有的head[i] = -1,当前边总数 edgeCount = 0
  • 每读入一条 u → v u \to v uv 的边,调用 addEdge(u, v, w),具体函数的实现如下:
void addEdge(int u, int v, int w) {
    edge[edgeCount] = Edge(u, v, w, head[u]);
    head[u] = edgeCount++;
}
  • 这个函数的含义是每加入一条边 ( u , v , w ) (u, v, w) (u,v,w),就在原有的链表结构的首部插入这条边,使得每次插入的时间复杂度为 O ( 1 ) O(1) O(1),所以链表的边的顺序和读入顺序正好是逆序的。这种结构在无论是稠密的还是稀疏的图上都有非常好的表现,空间上没有浪费,时间上也是最小开销。
  • 调用的时候只要通过head[i]就能访问到由 i i i 出发的第一条边的编号,通过编号到edge数组进行索引可以得到边的具体信息,然后根据这条边的next域可以得到第二条边的编号,以此类推,直到 next域为 -1 为止。
for (int e = head[u]; ~e; e = edges[e].next) {
    int v = edges[e].v;
    ValueType w = edges[e].w;
    ...
}
  • 文中的 ~e等价于 e != -1,是对e进行二进制取反的操作(-1 的的补码二进制全是 1,取反后变成全 0,这样就使得条件不满足跳出循环)。

5️⃣简单算法的入门

  • 入门十大算法是 线性枚举、线性迭代、简单排序、二分枚举、双指针、差分法、位运算、贪心、分治递归、简单动态规划。
  • 对于这十大算法,我会逐步更新道这个专栏里面:《LeetCode算法全集》
  • 浓缩版可参考如下文章:《十大入门算法》

🚊10、简单动态规划

LeetCode 746. 使用最小花费爬楼梯

  数组的每个下标作为一个阶梯,第 i i i 个阶梯对应着一个非负数的体力花费值 c o s t [ i ] cost[i] cost[i](下标从 0 开始)。每当爬上一个阶梯,都要花费对应的体力值,一旦支付了相应的体力值,就可以选择 向上爬一个阶梯 或者 爬两个阶梯。求找出达到楼层顶部的最低花费。在开始时,可以选择从下标为 0 或 1 的元素作为初始阶梯。
  样例输入: c o s t = [ 1 , 99 , 1 , 1 , 1 , 99 , 1 , 1 , 99 , 1 ] cost = [1, 99, 1, 1, 1, 99, 1, 1, 99, 1] cost=[1,99,1,1,1,99,1,1,99,1]
  样例输出: 6 6 6
如图所以,蓝色的代表消耗为 1 的楼梯,红色的代表消耗 99 的楼梯。

a、思路分析

  • 令走到第 i i i 层的最小消耗为 f [ i ] f[i] f[i]
  • 假设当前的位置在 i i i 层楼梯,那么只可能从 i − 1 i-1 i1 层过来,或者 i − 2 i-2 i2 层过来;
  • 如果从 i − 1 i-1 i1 层过来,则需要消耗体力值: f [ i − 1 ] + c o s t [ i − 1 ] f[i-1] + cost[i-1] f[i1]+cost[i1]
  • 如果从 i − 2 i-2 i2 层过来,则需要消耗体力值: f [ i − 2 ] + c o s t [ i − 2 ] f[i-2] + cost[i-2] f[i2]+cost[i2]
  • 起点可以在第 0 或者 第 1 层,于是有状态转移方程:
  • f [ i ] = { 0 i = 0 , 1 min ⁡ ( f [ i − 1 ] + c o s t [ i − 1 ] , f [ i − 2 ] + c o s t [ i − 2 ] ) i > 1 f[i] = \begin{cases} 0 & i=0,1\\ \min ( f[i-1] + cost[i-1], f[i-2] + cost[i-2] ) & i > 1\end{cases} f[i]={0min(f[i1]+cost[i1],f[i2]+cost[i2])i=0,1i>1

b. 时间复杂度

  • 状态数: O ( n ) O(n) O(n)
  • 状态转移: O ( 1 ) O(1) O(1)
  • 时间复杂度: O ( n ) O(n) O(n)

c. 代码详解

class Solution {
    int f[1100];                                                   // (1)
public:
    int minCostClimbingStairs(vector<int>& cost) {
        f[0] = 0, f[1] = 0;                                        // (2)
        for(int i = 2; i <= cost.size(); ++i) {
            f[i] = min(f[i-1] + cost[i-1], f[i-2] + cost[i-2]);    // (3)
        }
        return f[cost.size()];
    }
};
  • ( 1 ) (1) (1)f[i]代表到达第 i i i 层的消耗的最小体力值。
  • ( 2 ) (2) (2) 初始化;
  • ( 3 ) (3) (3) 状态转移;

有没有发现,这个问题和斐波那契数列很像,只不过斐波那契数列是求和,这里是求最小值。


6️⃣刷题顺序的建议

  然后介绍一下刷题顺序的问题,我们刷题的时候千万不要想着一步到位,一开始,没有刷满三百题,姿态放低,都把自己当成小白来处理。
  这里以刷 LeetCode 为例,我目前只刷了不到 50 题,所以我是小白。
  当我是小白时,我只刷入门题,也就是下面这几个专题。先把上面所有的题目刷完,在考虑下一步要做什么。

👨‍👦1、入门算法

种类链接
算法算法入门
数据结构数据结构入门
数组字符串专题数组和字符串
动态规划专题动态规划入门DP路径问题

  当入门的题刷完了,并且都能讲述出来自己刷题的过程以后,我们再来看初级的一些算法和简单的数据结构,简单的数据结构就是线性表了,包含:数组、字符串、链表、栈、队列 等等,即下面这些专题。

👩‍👧‍👦2、初级算法

种类链接
算法初级算法
栈和队列专题队列 & 栈

  上面的题刷完以后,其实已经算是基本入门了,然后就可以开始系统性的学习了。
  当然,基本如果真的到了这一步,说明你的确已经爱上了刷题了,那么我们可以尝试挑战一下 LeetCode 上的一些热门题,毕竟热门题才是现在面试的主流,能够有更好的结果,这样刷题的时候也会有更加强劲的动力不是吗!

👩‍👩‍👧‍👦3、中级算法

种类链接
算法中极算法
二叉树专题二叉树
热门题热门题 TOP 100

7️⃣系统学习算法和数据结构

🚍1、进阶动态规划

文章链接难度等级推荐阅读
夜深人静写算法(二)- 动态规划入门★☆☆☆☆★★★★★
夜深人静写算法(二十六)- 记忆化搜索★☆☆☆☆★★★★★
夜深人静写算法(十九)- 背包总览★☆☆☆☆★★★★★
夜深人静写算法(二十)- 最长单调子序列★☆☆☆☆★★★★★
夜深人静写算法(二十一)- 最长公共子序列★☆☆☆☆★★★★★
夜深人静写算法(二十二)- 最小编辑距离★★☆☆☆★★★★☆
夜深人静写算法(十四)- 0/1 背包★☆☆☆☆★★★★☆
夜深人静写算法(十五)- 完全背包★★☆☆☆★★★★☆
夜深人静写算法(十六)- 多重背包★★☆☆☆★★★★☆
夜深人静写算法(二十七)- 区间DP★★★☆☆★★★★☆
夜深人静写算法(二十九)- 数位DP★★★☆☆★★★★★
夜深人静写算法(十七)- 分组背包★★★☆☆★★★☆☆
夜深人静写算法(十八)- 依赖背包★★★★☆★★☆☆☆
夜深人静写算法(六)- RMQ★★★☆☆★★☆☆☆
树形DP待更新
组合博弈待更新
组合计数DP待更新
四边形不等式待更新
状态压缩DP/TSP待更新
斜率优化的动态规划待更新
插头DP待更新

🪐2、强劲图论搜索


1、深度优先搜索

文章链接难度等级推荐阅读
夜深人静写算法(一)- 搜索入门★☆☆☆☆★★★☆☆
夜深人静写算法(八)- 二分图最大匹配★★☆☆☆★★☆☆☆
最大团待更新
最小生成树待更新
树的分治待更新
迭代加深 IDA*待更新
有向图强连通分量和2-sat待更新
无向图割边割点待更新
带权图的二分图匹配待更新
哈密尔顿回路待更新
最近公共祖先待更新
欧拉回路圈套圈待更新
最小费用最大流待更新
最小树形图待更新

2、广度优先搜索

文章链接难度等级推荐阅读
夜深人静写算法(十)- 单向广搜★★☆☆☆★★★★☆
夜深人静写算法(二十三)- 最短路★★★☆☆★★★★☆
夜深人静写算法(二十五)- 稳定婚姻★★☆☆☆★★☆☆☆
夜深人静写算法(二十四)- 最短路径树★★★☆☆★☆☆☆☆
K 短路待更新
差分约束待更新
拓扑排序待更新
A*待更新
双向广搜待更新
最大流 最小割待更新

0️⃣3、进阶初等数论

文章链接难度等级推荐阅读
夜深人静写算法(三)- 初等数论入门★★☆☆☆★★★★☆
夜深人静写算法(三十)- 二分快速幂★☆☆☆☆★★★★★
夜深人静写算法(三十一)- 欧拉函数★★★☆☆★★★★★
夜深人静写算法(三十二)- 费马小定理★★☆☆☆★★★☆☆
夜深人静写算法(三十三)- 扩展欧拉定理★★★☆☆★★★★☆
夜深人静写算法(三十四)- 逆元★★★☆☆★★★★☆
夜深人静写算法(三十五)- RSA 加密解密★★★☆☆★★★★★
夜深人静写算法(三十六)- 中国剩余定理★★☆☆☆★★★☆☆
夜深人静写算法(三十七)- 威尔逊定理★★☆☆☆★★★☆☆
夜深人静写算法(三十八)- 整数分块★★☆☆☆★★★★☆
卢卡斯定理待更新
狄利克雷卷积待更新
莫比乌斯反演待更新
容斥原理待更新
拉宾米勒待更新
Pollard rho待更新
莫队待更新
原根待更新
大步小步算法待更新
二次剩余待更新
矩阵二分快速幂待更新
Polya环形计数待更新

🛑4、进阶计算几何

📏5、字符串的匹配

🎄6、高級数据结构


🙉饭不食,水不饮,题必须刷🙉

还不会C语言,和我一起打卡!
🌞《光天化日学C语言》🌞

LeetCode 太难?上简单题!
🧡《C语言入门100例》🧡

LeetCode 太简单?大神盘他!
🌌《夜深人静写算法》🌌

<p style="text-align:left;"> <b><span style="line-height:24px;background-color:#FFE500;color:#000000;font-size:14px;">【超实用课程内容】</span></b> </p> <p style="font-family:"color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <span style="line-height:24px;"><span style="color:#000000;"><span style="font-size:14px;">程序员对于算法一直又爱又恨!</span><span style="font-size:14px;">特别是在求职面试时,算法类问题绝对是不可逃避提问点!</span><span style="font-size:14px;">本门课程作为算法面试系列第一季,会从</span><span style="font-size:14px;">“知己知彼”角度,聊聊关于算法面试那些事~</span></span></span> </p> <p style="font-family:"color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <span style="line-height:24px;"><span style="color:#000000;"><span><br /> </span></span></span> </p> <p style="font-family:"color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <span style="line-height:24px;"><span style="color:#000000;"><span> </span></span></span> </p> <p class="ql-long-24357476" style="font-size:11pt;color:#494949;"> <span class="ql-author-24357476" style="color:#000000;background-color:#FFE500;font-size:14px;"><strong>【哪些人适合学习这门课程?】</strong></span> </p> <ul> <li> <p class="ql-long-24357476"> <span style="color:#000000;font-size:14px;">求职中开发者,对于面试算法阶段缺少经验</span> </p> </li> <li> <p class="ql-long-24357476"> <span style="color:#000000;font-size:14px;">想解实际工作中算法相关知识</span> </p> </li> <li> <p class="ql-long-24357476"> <span style="color:#000000;font-size:14px;">在职程序员,算法基础薄弱,急需充电</span> </p> </li> </ul> <p> <br /> </p> <p style="font-family:"color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <b><span style="line-height:24px;background-color:#FFE500;color:#000000;font-size:14px;"><span style="line-height:24px;color:#000000;font-size:14px;">【超人气讲师】</span></span></b><br /> <span style="line-height:24px;color:#000000;font-size:14px;">孙秀洋 | 服务器端工程师</span> </p> <p style="font-family:"color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <span style="line-height:24px;color:#000000;"><span style="font-family:"color:#3A4151;font-size:14px;background-color:#FFFFFF;">硕士毕业于哈工大计算机科学与技术专业,</span><span style="font-size:14px;">ACM亚洲区赛铜奖获得者,先后在腾讯和百度从事一线技术研发,对算法和后端技术有深刻见解。</span><br /> </span> </p> <p style="font-family:"color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <span style="line-height:24px;"><br /> </span> </p> <p class="ql-long-24357476" style="font-family:"color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <span style="line-height:24px;"></span> </p> <p style="font-family:Helvetica;color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <span style="line-height:24px;color:#000000;background-color:#FFE500;font-size:14px;"><span style="font-family:"line-height:24px;background-color:#FFE500;color:#000000;font-size:14px;"><b>【课程如何观看?】</b></span></span> </p> <p style="font-family:Helvetica;color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <span style="color:#000000;font-size:14px;">PC端:<a href="https://edu.csdn.net/course/detail/27272">https://edu.csdn.net/course/detail/27272</a></span> </p> <p style="font-family:Helvetica;color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <span style="color:#000000;font-size:14px;">移动端:CSDN 学院APP(注意不是CSDN APP哦)</span> </p> <p style="font-family:Helvetica;color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <span style="color:#000000;font-size:14px;">本课程为录播课,课程无限观看时长,但是大家可以抓紧时间学习后一起讨论哦~</span> </p>
相关推荐
<span style="color:#404040;">1.算法是程序灵魂,优秀程序在对海量数据处理时,依然保持高速计算,就需要高效数据结构算法支撑。</span><br /><br /><span style="color:#404040;">2.网上数据结构算法课程不少,但存在两个问题:</span><br /><br /><span style="color:#404040;">1)授课方式单一,大多是照着代码念一遍,数据结构算法本身就比较难理解,对基础好学员来说,还好一点,对基础不好学生来说,基本上就是听天书</span><br /><span style="color:#404040;">2)说是讲数据结构算法,但大多是挂羊头卖狗肉,算法很少。 本课程针对上述问题,有针对性进行升级 </span><br /><span style="color:#404040;">3)授课方式采用图解+算法游戏方式,让课程生动有趣好理解 </span><br /><span style="color:#404040;">4)系统全面讲解数据结构算法, 除常用数据结构算法外,还包括程序员常用10大算法:二分查找算法(非递归)、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、克鲁斯卡尔算法、迪杰斯特拉算法、弗洛伊德算法、马踏棋盘算法。可以解决面试遇到最短路径、最小生成树、最小连通图、动态规划等问题及衍生出面试题,让你秒杀其他面试小伙伴</span><br /><br /><span style="color:#404040;">3.如果你不想永远都是代码工人,就需要花时间来研究下数据结构算法。</span><br /><br /><span style="color:#404040;">教程内容:</span><br /><span style="color:#404040;">本教程是使用Java来讲解数据结构算法,考虑到数据结构算法较难,授课采用图解加算法游戏方式。内容包括: 稀疏数组、单向队列、环形队列、单向链表、双向链表、环形链表、约瑟夫问题、栈、前缀、中缀、后缀表达式、中缀表达式转换为后缀表达式、递归与回溯、迷宫问题、八皇后问题、算法时间复杂度、冒泡排序、选择排序、插入排序、快速排序、归并排序、希尔排序、基数排序(桶排序)、堆排序、排序速度分析、二分查找、插值查找、斐波那契查找、散列、哈希表、二叉树、二叉树与数组转换、二叉排序树(BST)、AVL树、线索二叉树、赫夫曼树、赫夫曼编码、多路查找树(B树B+树和B*树)、图、图DFS算法和BFS、程序员常用10大算法、二分查找算法(非递归)、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、克鲁斯卡尔算法、迪杰斯特拉算法、弗洛伊德算法马踏棋盘算法。</span><br /><br /><span style="color:#404040;">学习目标:</span><br /><span style="color:#404040;">通过学习,学员能掌握主流数据结构算法实现机制,开阔编程思路,提高优化程序能力。</span>
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值