中位数是有序列表中间的数。如果列表长度是偶数,中位数则是中间两个数的平均值。
例如,
[2,3,4] 的中位数是 3
[2,3]的中位数是 (2 + 3) / 2 = 2.5
设计一个支持以下两种操作的数据结构:
- void addNum(int num)- 从数据流中添加一个整数到数据结构中。
- double findMedian()- 返回目前所有元素的中位数。
 示例:
addNum(1)
addNum(2)
findMedian() -> 1.5
addNum(3)
findMedian() -> 2
进阶:
- 如果数据流中所有整数都在 0 到 100 范围内,你将如何优化你的算法?
- 如果数据流中 99% 的整数都在 0 到 100 范围内,你将如何优化你的算法?
解答
双堆模式,一个大顶堆记录较小的一半数字,一个小顶堆记录较大一部分的数字,考虑到总数可能为奇数的情况,总是让大顶堆记录多一个数字,这样当数字总数为奇数时返回大顶堆top,总数为偶数时返回两个堆top的平均。
class MedianFinder {
public:
	// 默认大顶堆,降序排列
    priority_queue<int> low;
    // 指定小顶堆,升序排列
    priority_queue<int, vector<int>, greater<int>> high;
    /** initialize your data structure here. */
    MedianFinder() {
    }
    
    void addNum(int num) {
        low.emplace(num);
        high.emplace(low.top());
        low.pop();
        if(low.size() < high.size()){
            low.emplace(high.top());
            high.pop();
        }
    }
    
    double findMedian() {
        if(low.size() > high.size())
            return low.top();
        else
            return (low.top() + high.top()) * 0.5;
    }
};
 
                   
                   
                   
                   
                             
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                   2471
					2471
					
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            