Will0Huang
码龄7年
关注
提问 私信
  • 博客:22,994
    22,994
    总访问量
  • 15
    原创
  • 2,161,342
    排名
  • 5
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2018-03-30
博客简介:

Will0Huang的博客

查看详细资料
个人成就
  • 获得11次点赞
  • 内容获得1次评论
  • 获得59次收藏
创作历程
  • 1篇
    2021年
  • 10篇
    2020年
  • 3篇
    2019年
  • 1篇
    2018年
成就勋章
TA的专栏
  • 电路
    1篇
  • 数字电路
  • 线性代数
    6篇
  • Python
    1篇
  • 实验室学习报告
    1篇
  • 机器学习
    1篇
  • 图像处理
    1篇
  • 数据结构与算法
    1篇
  • 人机博弈
    1篇
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

电力电子(1)- 半导体

电力电子(1)- 半导体掺杂、自由电子和空穴物质由原子组成。不同元素的原子,结构不同。半导体元素(硅、砷、锗等) 的原子最外层有活跃的 价电子(valence electron)。两个原子之间的价电子能够两两成对地形成共价键(covalent bond)。价电子围绕原子核旋转,如果关注其的能量属性,将发现它的能量取值是离散的,也就是说价电子只能处在若干个能级之一。价电子从一个能级跃迁到更高能量的能级需要从外界吸收能量,比如升温。一个能级称为价电子带(valence band),比它高一个级别
原创
发布博客 2021.01.28 ·
1179 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏

数字电路(1)- 逻辑代数第一讲

数字电路(1)- 逻辑代数第一讲variable, complement, literalAAA is a variableA‾\overline{A}A is the complement of AAAA,A‾A,\overline{A}A,A are literals逻辑运算及定律  boolean addition , OR  boolean multiplication , AND  它们满足交换律、结合律和分配律更多推论A+0=AA+0=AA+0=AA+1=1
原创
发布博客 2020.09.28 ·
758 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

线性代数(5)- 线性映射第三讲

线性代数(5)- 线性映射第三讲向量空间的积  对于向量空间V1.…,VmV_1.\dots,V_mV1​.…,Vm​,它们的积(Product)定义为V1×⋯×Vm={(v1,…,vm)∣v1∈V1,…,vm∈Vm}V_1\times \dots \times V_m=\lbrace (v_1,\dots,v_m) \mid v_1\in V_1,\dots,v_m \in V_m \rbraceV1​×⋯×Vm​={(v1​,…,vm​)∣v1​∈V1​,…,vm​∈Vm​}  这一个集合表征的空
原创
发布博客 2020.07.29 ·
596 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

线性代数(6)- 线性映射第四讲

线性代数(6)- 线性映射第四讲线性泛函数  T∈L(V,F)T\in L(V,F)T∈L(V,F),则TTT可以被称为是一个线性泛函数(Linear Functional)对偶空间  V′=L(V,F)V'=L(V,F)V′=L(V,F),则V′V'V′称为VVV的对偶空间(Dual Space)  VVV是有限维度的,则可推出,V′V'V′是有限维度的且dim V′=dim Vdim\ V'=dim\ Vdim V′=dim V  v1,…,vnv_1
原创
发布博客 2020.07.29 ·
985 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

线性代数(4)- 线性映射第二讲

线性代数(4)- 线性映射第二讲矩阵  m,n是正整数,则m行n列的矩阵是一个数阵,每个元素都取于FFF A=[A1,1⋯A1,n⋮⋱Am,1⋯Am,n]A=\begin{bmatrix}A_{1,1} & \cdots & A_{1,n} \\\vdots & & \ddots \\A_{m,1} & \cdots & A_{m,n} \\\end{bmatrix}A=⎣⎢⎡​A1,1​⋮Am,1​​⋯⋯​A1,n​⋱Am
原创
发布博客 2020.07.25 ·
1085 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

线性代数(3)- 线性映射第一讲

线性代数(3)- 线性映射线性映射  一个满足以下性质的函数T:V→WT:V \rightarrow WT:V→W被称为一个线性映射(Linear Map)或线性变换(Linear Transform)Additivity: ∀u,v∈V,T(u+v)=Tu+Tv\forall u,v \in V,T(u+v)=Tu+Tv∀u,v∈V,T(u+v)=Tu+TvHomogeneity: ∀λ∈F,∀u∈V,T(λu)=λ(Tu)\forall \lambda \in F, \forall u \in
原创
发布博客 2020.07.23 ·
3401 阅读 ·
2 点赞 ·
0 评论 ·
6 收藏

线性代数(2)- 有限维的向量空间

有限维的向量空间线性组合  同一个向量空间VVV中,有若干个向量v1,…,vmv_1,\dots,v_mv1​,…,vm​,则a1v1+…+amvma_1v_1+\ldots+a_mv_ma1​v1​+…+am​vm​被称为是它们的线性组合(Linear Combination),其中a1,…,am∈Fa_1, \dots, a_m \in Fa1​,…,am​∈F展开  同一个向量空间中,若干的向量v1,…,vmv_1,\dots,v_mv1​,…,vm​的展开(Span)  span(v1,…
原创
发布博客 2020.07.22 ·
1153 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

设计模式(1)- 八个设计原则

设计模式(一) 八个设计原则设计模式  一个实际任务往往可以分成不同的部分,通过向下继续分解,可以得到不同的子任务。学者们发现,存在一些典型任务,这些任务是具有普遍适用性的,并且存在一些程序结构,可以更好地完成任务。这个“更好”被定义为后面讲到的八个设计原则。这些典型任务对应的解决方案(这些好的程序结构)就被称为设计模式(Design Pattern)。  这八个设计原则都是基于一个点所延展开来的,这就是现代编程工程的主要矛盾,即“需求总是在不断变化的”。可以说,所有的设计模式,都是以不同的角度,处理
原创
发布博客 2020.07.21 ·
274 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

线性代数(1)- 向量空间

线性代数(1)- 向量空间(Vector Space)复数(Complex Number)  向量空间(Vector Space)首先是一个空间,数学形式上就是一个集合(Set)。很自然的,首先需要定义元素(Element)的概念,实数是一类元素,类似地,复数也是一类元素。  引入复数是为了体现向量空间的概念是普遍的,从它的元素可取的值就能看出,事实上,函数也是一类元素,后面将看到,只要定义了合理的加法和数乘运算,什么样的元素都可以组成一个向量空间。  复数可以视为两个实数的对,a+bi,在运算上直
原创
发布博客 2020.07.21 ·
2366 阅读 ·
1 点赞 ·
1 评论 ·
7 收藏

Python 高级编程 Type Hint (一)

近来使用Python作为项目开发语言。为符合软件工程的要求,提高代码质量和可读性,考虑使用python一些高级特性,比如新版本引入的官方typing库。程序员在使用typing库并遵循一定规范进行编码后,如果所使用的IDE支持这种Python的新规范,则能进行一些进阶的静态检查,比如泛型的支持。泛型(Generic)指的是允许程序员在编写代码时定义一些可变部分,那些部分在使用前才作出指明,这是一种思想。以泛型类为例(这是泛型思想的一个具体实例),考虑C++中的vector,这就是一个泛型类。它在程序
原创
发布博客 2020.07.15 ·
563 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

神经网络随笔 HopField & RBF & BP神经网络

近来需要研究神经网络在控制领域的应用,因此有必要回顾一些经典的神经网络模型,比如HopField神经网络、RBF神经网络。 HopField神经网络是非常特殊的,其关键词是“状态”,即每一个神经元在一个时间点上有状态概念。神经元对应的状态变量的取值可以是离散的,也可以是连续的,也因此分为离散型HopField网络(DHNN)和连续型HopField(CHNN)。这里仅讨论离散型,并且其取值是二值的(-1,1),其它的原理可由其导出。其特殊之处,除了对每个神经元引入“状态”的...
原创
发布博客 2020.07.10 ·
1820 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

人机博弈初探

人机博弈 人机博弈,顾名思义,就是运用博弈论的知识,赋予计算机与人博弈的能力。 人机同台竞技,开头能想到算法自然是很多的。简单的有贪心算法,即数学建模一个评估游戏局面的函数,让计算机每一次做决策时,简单粗暴地选择当前最优的可行步骤。显而易见,对于五子棋、国际象棋等这类相对复杂的游戏,仅仅贪心算法是有心无力的,因为当前最优不代表全局最优,也就是说只考虑当前局面是有...
原创
发布博客 2019.04.19 ·
4320 阅读 ·
3 点赞 ·
0 评论 ·
15 收藏

堆栈实现·括号匹配问题

堆栈的练习题,就是输入一堆括号,告诉你他们是否左右括号匹配了,如果不匹配则输出第一个不匹配的位置思路非常简单,直接看代码一直贯彻自文档化(self-documenting)的代码习惯// 括号匹配问题# include <stdio.h># include <stdlib.h># include <string.h>// 栈元素存储的信...
原创
发布博客 2019.03.21 ·
928 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

BMP图片 读取

学习资料主要来源是CSDN论坛,维基百科,和Microsoft官方文档。BMP,BitMap图,是微软提出的用来存储位图的标准格式,它现在不仅仅只适用于Windows系统,还已经拓展到了其他平台,于是 BMP 也有了别名 DIB Device-independent BitMap 设备独立的位图。首先BMP格式使用的是小端模式记录数据块。比如有一个数据块是0x123456 其中数学上,最高...
原创
发布博客 2019.01.22 ·
2268 阅读 ·
1 点赞 ·
0 评论 ·
11 收藏

BMP读取与显示

发布资源 2019.01.22 ·
zip

OSI模型的认知(一)

协议栈与OSI模型的特点,网络层,数据链路层的简要
原创
发布博客 2018.03.30 ·
405 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多